Abstract:
A processor includes a decode unit to receive an instruction to indicate a first source packed data operand and a second source packed data operand. The source operands each to include elements. The data elements to include information selected from messages and logical combinations of messages that is sufficient to evaluate: P1(Wj−16 XOR Wj−9 XOR(Wj−3
Abstract:
A processor includes an instruction decoder to receive a first instruction to process a secure hash algorithm 2 (SHA-2) hash algorithm, the first instruction having a first operand associated with a first storage location to store a SHA-2 state and a second operand associated with a second storage location to store a plurality of messages and round constants. The processor further includes an execution unit coupled to the instruction decoder to perform one or more iterations of the SHA-2 hash algorithm on the SHA-2 state specified by the first operand and the plurality of messages and round constants specified by the second operand, in response to the first instruction.
Abstract:
Instructions and logic provide for a Single Instruction Multiple Data (SIMD) SM4 round slice operation. Embodiments of an instruction specify a first and a second source data operand set, and substitution function indicators, e.g. in an immediate operand. Embodiments of a processor may include encryption units, responsive to the first instruction, to: perform a slice of SM4-round exchanges on a portion of the first source data operand set with a corresponding keys from the second source data operand set in response to a substitution function indicator that indicates a first substitution function, perform a slice of SM4 key generations using another portion of the first source data operand set with corresponding constants from the second source data operand set in response to a substitution function indicator that indicates a second substitution function, and store a set of result elements of the first instruction in a SIMD destination register.
Abstract:
A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
Abstract:
A method in one aspect may include receiving a multiply instruction. The multiply instruction may indicate a first source operand and a second source operand. A product of the first and second source operands may be stored in one or more destination operands indicated by the multiply instruction. Execution of the multiply instruction may complete without writing a carry flag. Other methods are also disclosed, as are apparatus, systems, and instructions on machine-readable medium.
Abstract:
An embodiment may include circuitry that may be capable of performing compression-related operations that may include: (a) indicating, at least in part, in a data structure at least one position of at least one subset of characters that are to be encoded as a symbol, (b) comparing, at least in part, at least one pair of multi-byte data words that are of identical predetermined fixed size, (c) maintaining, at least in part, an array of pointers to potentially matching strings that are to be compared with at least one currently examined string, and/or (d) allocating, at least in part, a first buffer portion to store at least one portion of uncompressed data from an application buffer that is to be input for compression to produce a compressed data stream.
Abstract:
A processor includes an instruction decoder to receive a first instruction to process a secure hash algorithm 2 (SHA-2) hash algorithm, the first instruction having a first operand associated with a first storage location to store a SHA-2 state and a second operand associated with a second storage location to store a plurality of messages and round constants. The processor further includes an execution unit coupled to the instruction decoder to perform one or more iterations of the SHA-2 hash algorithm on the SHA-2 state specified by the first operand and the plurality of messages and round constants specified by the second operand, in response to the first instruction.
Abstract:
Instructions and logic provide SIMD secure hashing round slice functionality. Some embodiments include a processor comprising: a decode stage to decode an instruction for a SIMD secure hashing algorithm round slice, the instruction specifying a source data operand set, a message-plus-constant operand set, a round-slice portion of the secure hashing algorithm round, and a rotator set portion of rotate settings. Processor execution units, are responsive to the decoded instruction, to perform a secure hashing round-slice set of round iterations upon the source data operand set, applying the message-plus-constant operand set and the rotator set, and store a result of the instruction in a SIMD destination register. One embodiment of the instruction specifies a hash round type as one of four MD5 round types. Other embodiments may specify a hash round type by an immediate operand as one of three SHA-1 round types or as a SHA-2 round type.
Abstract:
A processor includes an instruction decoder to receive a first instruction to process a secure hash algorithm 2 (SHA-2) hash algorithm, the first instruction having a first operand associated with a first storage location to store a SHA-2 state and a second operand associated with a second storage location to store a plurality of messages and round constants. The processor further includes an execution unit coupled to the instruction decoder to perform one or more iterations of the SHA-2 hash algorithm on the SHA-2 state specified by the first operand and the plurality of messages and round constants specified by the second operand, in response to the first instruction.
Abstract:
A processing system is provided that includes a memory for storing an input bit stream and a processing logic, operatively coupled to the memory, to generate a first score based on: a first set of matching data related to a match between a first bit subsequence and a candidate bit subsequence within the input bit stream, and a first distance of the candidate bit subsequence from the first set of matching data. A second score is generated based on a second set of matching data related to a match between a second bit subsequence and the candidate bit subsequence, and a second distance of the candidate bit subsequence from the second set of matching data. A code to replace the first or second bit subsequence in an output bit stream is identified. Selection of the one of the bit subsequences to replace is based on a comparison of the scores.