Abstract:
A liquid crystal display device includes a first substrate, a first alignment film formed over the first substrate, a second substrate, a second alignment film formed over the second substrate, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, and a projecting portion formed over the second substrate. The first alignment film is a photo alignment film, and a thickness “d2” of the second alignment film over the projecting portion and a film thickness “d1” of a portion of the first alignment film facing the projecting portion satisfy formula (2), d2
Abstract:
The present invention prevents the shaving of an alignment film caused by a columnar spacer in a liquid crystal display device of an IPS method using photo-alignment. A plinth higher than a pixel electrode is formed at a part where a columnar spacer formed over a counter substrate touches a TFT substrate. When an alignment film of a double-layered structure is applied over the pixel electrode and the plinth, the thickness of the alignment film over the plinth reduces by a leveling effect. When photo-alignment is applied in the state, a photodegraded upper alignment film over the plinth disappears and a lower alignment film having a high mechanical strength remains. As a result, it is possible to prevent the shaving of the alignment film.
Abstract:
A liquid crystal display device includes a first substrate, a first alignment film formed over the first substrate, a second substrate, a second alignment film formed over the second substrate, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, and a projecting portion formed over the second substrate. The first alignment film is a photo alignment film, and a thickness “d2” of the second alignment film over the projecting portion and a film thickness “d1” of a portion of the first alignment film facing the projecting portion satisfy formula (1) and (2): 0 nm
Abstract:
In a liquid crystal display device including: TFT substrate; color filter; counter electrode; interlayer insulation film; pixel electrode; alignment film; liquid crystal layer; counter substrate; and Si semiconductor layer. The color filter, counter electrode, interlayer insulation film, pixel electrode, and alignment film being formed on the side where the TFT substrate is provided, the counter substrate being disposed in facing relation to the TFT substrate with the liquid crystal layer put between the counter substrate and TFT substrate, the Si semiconductor layer is formed between the pixel electrode and interlayer insulation film. Even when light from a backlight is absorbed by the color filter and sufficient light cannot reach the alignment film, electric charges accumulated on the alignment film can escape to the pixel electrode in an early stage by the Si semiconductor layer formed under the alignment film, thereby capable of erasing the afterimage in an early stage.
Abstract:
An alignment film is given a 2-layer structure comprising a photoalignment film that is photoalignable and a low-resistivity alignment film whose resistivity is smaller than that of the photoalignment film. The photoalignment film is formed by a polyimide whose precursor is polyamide acid alkyl ester, the number molecular weight of the photoalignment film is large, and the stability of alignment of the photoalignment film by photoalignment is excellent. The low-resistivity alignment film is formed by a polyimide whose precursor is polyamide acid, the number molecular weight of the low-resistivity alignment film is small, and the resistivity of the low-resistivity alignment film is small. The 2-layer structure alignment film can be maintaining an excellent photoalignment characteristic, so DC afterimages can be controlled.
Abstract:
A display device includes a first substrate, a second substrate and liquid crystals therebetween, the first substrate having a flat portion, an alignment film, and a concavo-convex pedestal formed in a pixel region, wherein the concavo-convex pedestal having at least two convex portions and recessed portions, and the at least two convex portions of the concavo-convex pedestal are at a position lower than a position of the flat portion. A thickness of the alignment film on the convex portions is less than a thickness of the alignment film on the recessed portions, and a second substrate has a columnar spacer which contacts the at least two convex portions of the concavo-convex pedestal.
Abstract:
A liquid crystal display device includes: a pair of substrates at least one of which is transparent; a liquid crystal layer disposed between the pair of substrates; an electrode group formed on at least one substrate of the pair of substrates, for applying an electric field to the liquid crystal layer; a plurality of active elements connected to the electrode group; and a liquid crystal alignment film disposed on at least one substrate of the pair of substrates, in which the liquid crystal alignment film, which is formed by a photo-alignment process, contains polyimide formed using tetracarboxylic acid dianhydride and/or diamine each having a specific chemical structure.
Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A method for fabricating a liquid crystal display device having a TFT substrate in which an alignment film is formed over a pixel including a pixel electrode and a TFT, an opposing substrate which faces the TFT substrate, and liquid crystals sandwiched between the TFT substrate and the opposing substrate, the alignment film on the TFT substrate including a first and a second alignment film. The method includes depositing a mixture liquid of polyamide acid ester, 80 percent or more of which is polyamide acid ester including cyclobutane, and polyamide acid not including cyclobutane onto the TFT substrate and the opposing substrate, and after drying and firing the TFT substrate and the opposing substrate to harden the alignment film, irradiating the alignment film with ultraviolet light for photo-alignment of the alignment film and, thereafter, heating the TFT substrate and the opposing substrate, thereby forming the alignment film.
Abstract:
Disclosed is a manufacturing method of a liquid crystal display device which is a manufacturing method of a liquid crystal display device including a liquid crystal alignment film to which an alignment regulating force is imparted by a photo-alignment treatment, including: a film forming step of forming a film containing a polymer whose main chain is cleaved by irradiation with light; a photo-alignment step of imparting an alignment regulating force to the film formed in the film forming step by irradiation of the film with light in an atmosphere of a temperature lower than 100° C.; and a removing step of removing a low-molecular weight component generated by cleaving the main chain of the polymer through the light irradiation after the light irradiation. Also disclosed is a liquid crystal display device manufactured by the manufacturing method.