摘要:
Provided herein is a retardation optical element 10 that produces no bright and dark fringes on a displayed image even when placed between a liquid crystal cell 104 and a polarizer 102B and thus can effectively prevent lowering of display quality. The retardation optical element 10 includes a retardation layer 12 having a cholesteric-regular molecular structure with liquid crystalline molecules in planar orientation. The helical pitch in the molecular structure of the retardation layer 12 is so adjusted that the retardation layer 12 can, owing to its molecular structure, selectively reflect light whose wavelength falls in a range different from the wave range of light incident on the retardation layer 12 (the selective reflection wave range of the retardation layer is either shorter or longer than the wave range of the incident light). Further, the retardation layer 12 has two opposite main surfaces (larger surfaces) 12A and 12B that are perpendicular to each other in the direction of thickness, where the directions of the directors Da of the liquid crystalline molecules on the entire area of the one surface 12A are substantially the same, and those of the directors Db of the liquid crystalline molecules on the entire area of the other surface 12B are also substantially the same.
摘要:
A main object of the invention is to provide a phase difference layer laminated body which has a very high freedom in orienting molecules of its phase difference layer, and which is manufactured with ease. To achieve the above object, the invention provides a phase difference layer laminated body including a base material having orientability, and a phase difference layer made of a liquid crystal material that can form a nematic phase and formed in a pattern on the base material such as to have refractive index anisotropy.
摘要:
The present invention provides a method of efficiently and precisely patterning cholesteric films. A cholesteric film 13 is firstly formed on an alignment film 12 provided on a glass substrate 11. The cholesteric film 13 is then patterned by partially volatilizing and removing a part of the cholesteric film 13 by the application of laser light 20 having a wavelength not falling in the selective reflection wave range of the cholesteric film 13. It is preferred that the wavelength of the laser light 20 be shorter than that of visible light. Alternatively, there may be used laser light 20 containing, as its main component, a component circularly polarized in the direction opposite to that of optical rotation of a component selectively reflected by the cholesteric film.
摘要:
An optical device in which a polymerizable liquid crystal material various optical characteristics of which is stable even against heating during manufacture of an optical apparatus such as an image display is cured. The optical device has a support and an optical functional layer made of a cured polymerizable liquid crystal material having a predetermined liquid crystal regularity and provided on the support. The optical device is characterized in that the optical device is subjected to a heat treatment at a predetermined temperature and in that the thickness decrease of the optical functional layer defined by (A-B)/A is 5% or less where A is the thickness of the optical functional layer after the heat treatment, and B is the thickness of the optical functional layer after the optical device is heated for 60 minutes at the heat-treatment temperature.
摘要:
The present invention provides a method of efficiently and precisely patterning cholesteric films. A cholesteric film 13 is firstly formed on an alignment film 12 provided on a glass substrate 11. The cholesteric film 13 is then patterned by partially volatilizing and removing a part of the cholesteric film 13 by the application of laser light 20 having a wavelength not falling in the selective reflection wave range of the cholesteric film 13. It is preferred that the wavelength of the laser light 20 be shorter than that of visible light. Alternatively, there may be used laser light 20 containing, as its main component, a component circularly polarized in the direction opposite to that of optical rotation of a component selectively reflected by the cholesteric film.
摘要:
A wavelength-selecting optical element includes a cholesteric layer that reflects or transmits either of a right-handed circularly polarized light component and a left-handed circularly polarized light component in a selected wavelength band of an incident light; and a diffusing layer disposed on the exit side of the cholesteric layer to diffuse the circularly polarized light component reflected or transmitted by the cholesteric layer. The cholesteric layer may be a color filter having a red, a green and a blue pixel region for each of pixels. Each of the pixel regions reflects or transmits either of a right-handed circularly polarized light component and a left-handed circularly polarized light component in a selected wavelength band of an incident light.
摘要:
An optical device in which a polymerizable liquid crystal material various optical characteristics of which is stable even against heating during manufacture of an optical apparatus such as an image display is cured. The optical device has a support and an optical functional layer made of a cured polymerizable liquid crystal material having a predetermined liquid crystal regularity and provided on the support. The optical device is characterized in that the optical device is subjected to a heat treatment at a predetermined temperature and in that the thickness decrease of the optical functional layer defined by (A−B)/A is 5% or less where A is the thickness of the optical functional layer after the heat treatment, and B is the thickness of the optical functional layer after the optical device is heated for 60 minutes at the heat-treatment temperature.
摘要:
In a combination reflective/transmissive liquid-crystal display device, when the liquid-crystal display device is in the transmissive mode, unpolarized light from a light source passes through a circular polarization separating layer, a half-wavelength layer in the off condition, and a first bidirectional dichroic circular polarizing layer and then strikes a liquid-crystal cell, the retardation value of which, as a result of an electrical field applied thereto, changes so as to shift light 0 to &pgr;, thereby modulating incident As circularly polarized light, which is caused to strike a second bidirectional dichroic circular polarizing layer, the transmitted component in which serves as the display light. In the reflective mode, external light passes through the second bidirectional dichroic circular polarizing layer, the liquid-crystal cell, the half-wavelength layer which has been turned on, and the first bidirectional dichroic circular polarizing layer, and is then reflected by the circular polarization separating layer so as to become circularly polarized light that also serves as the display light.
摘要:
In an optical sheet 10 having a prism surface 16 formed by providing unit prisms 14 on the upper surface of a transparent base material 12, a coating layer 18 is provided on the reverse surface of the transparent base material opposite to the prism surface 16, spherical beads 20 are arranged projecting from the surface of the coating layer 18 by 1 to 10 &mgr;m in height, and the coating layer 18 is brought into contact with the flat and smooth surface 22A of the light-transmissive material 22 through the spherical beads 20 which are put between them. The spherical beads are 1 &mgr;m or less in half bandwidth of the distribution of particle diameters and are made uniform in height projecting from the coating layer 18.
摘要:
In an optical sheet 10 having a prism surface 16 formed by providing unit prisms 14 on the upper surface of a transparent base material 12, a coating layer 18 is provided on the reverse surface of the transparent base material opposite to the prism surface 16, spherical beads 20 are arranged projecting from the surface of the coating layer 18 by 1 to 10 &mgr;m in height, and the coating layer 18 is brought into contact with the flat and smooth surface 22A of the light-transmissive material 22 through the spherical beads 20 which are put between them. The spherical beads are 1 &mgr;m or less in half bandwidth of the distribution of particle diameters and are made uniform in height projecting from the coating layer 18.