摘要:
Processing signals in a digital communication may include equalizing a signal in a timing-recovery system using a frequency domain equalizer. The frequency domain equalizer may be a frequency domain adaptive filter that adapts using a least-mean-square algorithm where at least one tap-weight that corresponds to a pre-cursor may be constrained to zero. The processing may include recovering timing information using a Mueller/Muller timing recovery algorithm that may be aided by using a pre-filter before the equalizer.
摘要:
Aspects of a method and system for low power IDLE signal transmission in Ethernet networks are provided. In this regard, during time periods between transmissions of actual data by a local Ethernet link partner, the local Ethernet Link partner may generate one or more signals, in place of a standard Ethernet IDLE signal, that enable synchronization between Ethernet link partners. In this manner, the generated signals may enable reducing power consumption as compared to standard Ethernet IDLE signals. Accordingly, link activity may be monitored to enable detecting periods when there may be no actual data for transmission and the generated signals may be transmitted. The generated signals may be transmitted at a reduced symbol rate as compared to standard Ethernet IDLE signals. The generated signals may be transmitted via fewer network links as compared to standard Ethernet IDLE signals.
摘要:
A system and method for dynamic power control for energy efficient physical layer communication devices. Energy-efficiency features are continually being developed to conserve energy in links between such energy-efficient devices. These energy-efficient devices interoperate with many legacy devices that have already been deployed. In these links, energy savings can be produced by having a local receiver enter an energy saving state based upon the receipt of standard IDLE signals.
摘要:
A system and method for continual cable thermal monitoring using cable characteristic considerations in Power over Ethernet (PoE) applications. Cable heating in PoE applications is detected through changes in electrical characteristics of the cable itself. By periodically monitoring the electrical characteristics such as insertion loss or cross talk of the cable, it can be determined whether the cable has exceeded certain thermal operating thresholds.
摘要:
A system and method for using a physical layer device to locate a thermal signature in a cable plant for diagnostic, enhanced, and higher power applications. Cable heating in specific sections of a network cable is detected through an automatic identification of a thermal signature in electrical measurements of a network cable. The correlation of the thermal signature to a specific section of the network cable enables network personnel to locate hot spots in the network cable with ease.
摘要:
A system and method for using an Ethernet physical layer device to identify cabling topologies. A power sourcing equipment (PSE) can power independent powered devices (PDs) using two sets of wire pairs in a single four-pair cable. Higher power PSEs can power a single PD using all four wire pairs in the cable. Conventional power over Ethernet (PoE) analog techniques (i.e., voltage, current, etc.) have a difficult time distinguishing where the wire pairs are going from the PSE. By using information (e.g., negotiated speed, link energy, distance diagnostic, etc.) generated by the physical layer device (PHY) subsystem, the PoE system can determine whether the two sets of wire pairs in a cable are powering a single PD or two independent PDs.
摘要:
A system and method for using a link energy signal in physical layer devices (PHYs) having a silent channel/interface in energy efficient Ethernet (EEE). LPI modes in EEE suffer deficiencies in cable unplug detection due to the latency in refresh cycles. LPI modes in EEE also suffer from potential frequency drift, which leads to high bit error rate (BER) when coming out of LPI mode. A link energy signal transmitted during LPI modes enables real-time detection of cable unplug and the frequency lock to be maintained.
摘要:
Aspects of a method and system for utilization of an reserved and/or out of band channel for maintaining a network connection are provided. In this regard, information relating to training of one or more link partners communicatively coupled to an Ethernet link may be exchanged via a reserved and/or out of band channel on the Ethernet link. The reserved and/or out of band channel may be an auxiliary channel as specified by the IEEE802.1AN standard. The reserved and/or out of band channel may be utilized for scheduling training of one or more of the link partners, determining which of the link partners require training, synchronizing training of the link partners, training the link partners based on changes in environmental conditions. The training may comprise configuring an echo canceller a far-end crosstalk canceller, and/or a near-end crosstalk canceller.
摘要:
An interleaving operation can scramble (permute) a data stream, or each dimension (set of symbols (a, b, c, . . . )) in a data stream, immediately following FEC encoding or dimension multiplexing of the data stream. Bursts of errors might be combined with the permuted data before, during, or after transmission. A de-interleaver reorders the received symbols and, in the process, spreads (separates) the bursts of errors. Also, using the multi-dimensional interleaving and de-interleaving can balance SNR on each channel. Spreading the errors and/or balancing SNR can keep bursts from overwhelming the FEC decoder or an FEC decoder in any one channel. In one example, interleaving and de-interleaving can be used to scramble data over Ethernet twisted wire pairs. In another example, interleaving and de-interleaving can be used to scramble data or information broadcast via wireless telecommunications channels (e.g., radio frequency channels, multi-antenna channels, etc).
摘要:
Aspects of a method and system for an extended range Ethernet line code are provided. A local PHY may enable converting Ethernet media independent interface (MII) data from a 4-bit packet stream to a 3-bit packet stream. The 3-bit packet stream may be mapped to first and second ternary bits streams, for example, for communication to a remote PHY utilizing PAM-3 over one or more twisted-pair wires. The 3-bit packet stream may be scrambled and/or aligned before mapping. When a single twisted-pair wire is available, the local PHY may multiplex the ternary bits streams into a single stream. Start-stream delimiters (SSD) may be inserted before the ternary bits streams and end-stream delimiters may be inserted after the ternary bits streams. Idle signals may be inserted after the ESDs and before the start of the next frame of MII data.