Abstract:
A rate control system suitable for use with a digital video transcoder, such as one conforming to the MPEG standard. The proposed rate control system starts coding with any reasonable set of assumed Group of Pictures (GOP) parameters, thereby avoiding a processing delay of about one GOP which would otherwise be incurred to extract the complete GOP structure information from a pre-compressed bit stream. In addition, the system avoids the need to store the data corresponding to the GOP, thereby reducing the memory required for transcoding. Encoding of a first picture in a sequence or GOP begins without a priori knowledge of the picture type of subsequent pictures. A reasonable set of GOP parameters is assumed to determine an encoding bit budget. The bit budget is gradually corrected as successive pictures are coded according to their picture types. Changes in the GOP structure of pre-compressed bitstreams can be addressed, for example, when switching channels, inserting commercials, and the like. Target rates with incorrect starting GOP parameters will converge within a few GOPs.
Abstract:
A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode.
Abstract:
A rate control system suitable for use with a digital video transcoder, such as one conforming to the MPEG standard. The proposed rate control system starts coding with any reasonable set of assumed Group of Pictures (GOP) parameters, thereby avoiding a processing delay of about one GOP which would otherwise be incurred to extract the complete GOP structure information from a pre-compressed bit stream. In addition, the system avoids the need to store the data corresponding to the GOP, thereby reducing the memory required for transcoding. Encoding of a first picture in a sequence or GOP begins without a priori knowledge of the picture type of subsequent pictures. A reasonable set of GOP parameters is assumed to determine an encoding bit budget. The bit budget is gradually corrected as successive pictures are coded according to their picture types. Changes in the GOP structure of pre-compressed bitstreams can be addressed, for example, when switching channels, inserting commercials, and the like. Target rates with incorrect starting GOP parameters will converge within a few GOPs.
Abstract:
A system for converting the color format of a digital video bitstream. The system accounts for the allowable formats of the pre- and-post-conversion bitstreams, including quantizer precision level, and whether luma and chroma data have separate quantization matrices, or share a common quantization matrix. In a particular implementation, an MPEG-2 4:2:2 P bitstream having a color format of 4:2:2 or 4:2:0 is converted to a MP bitstream having a color format of 4:2:0. Coding efficiencies are achieved by using the luma quantization matrix to re-quantize the chroma data, and re-using luma motion vectors for performing motion compensation of the chroma data. Further efficiencies can be achieved by representing a 4:2:2 reference picture in a 4:2:0 format for converting inter coded frames, and changing the position of a pixel downsizing filter and clip function. Adjustment of the quantization precision is provided as required. A transcoding function can also be achieved.
Abstract:
A method and apparatus are provided for controlling and balancing a quality ratio between left and right channels of a stereoscopic video sequence. A complexity measure for each of the channels is first determined. Thereafter, a number of bits representing the video sequence is allocated between the channels according to each channel's complexity. The resultant joint rate control allows the bit rates for the two channels to vary according to the complexity measures of their pictures, while the aggregate bit rate is maintained at the channel capacity, which is a constant value.
Abstract:
Disclosed is a method for searching, identifying, or validating a marker CACNA2D1 of tumor-initiating cells. The method comprises a step of immunizing an animal using HEP-12 cells originating from a recurrent tumor and rich in originating cells. Also disclosed is a monoclonal antibody specially recognizing CACNA2D1 or antigen-binding fragments thereof, and the use thereof for treating or preventing tumors or diseases or conditions related to CACNA2D1.
Abstract:
In one embodiment, a method for encoding or decoding video content is provided. The method includes receiving a plurality of full-pel pixel values. A set of coefficients is determined for an interpolation filter to interpolate a sub-pel pixel value for a motion compensation operation. Different coefficients are assigned to weight the plurality of full-pel pixel values in different operations in the interpolation filter. The sub-pel pixel values from the different operations are determined. Then, the method outputs the interpolated sub-pel pixel value for use in the motion compensation operation.
Abstract:
In one embodiment, a spatial merge mode or a temporal merge mode for a block of video content may be used in merging motion parameters. Both spatial and temporal merge parameters are considered concurrently and do not require utilization of bits or flags or indexing to signal a decoder. If the spatial merge mode is determined, the method merges the block of video content with a spatially-located block, where merging shares motion parameters between the spatially-located block and the block of video content. If the temporal merge mode is determined, the method merges the block of video content with a temporally-located block, where merging shares motion parameters between the temporally-located block and the block of video content.
Abstract:
The invention is concerned with the strains of B. coagulans for lactic acid production and the related methods, in which the carbon sources are pentose or hexose or the agricultural or industrial wastes containing pentose or hexose or a mixture of both. According to the invention, the highest amount of L-lactic acid produced from glucose is 173 g/L, the optical purity is over 99%, the yield is up to 0.98, and the productivity is up to 2.4 g/L per hour. The highest amount of L-lactic acid produced from xylose is 195 g/L, the optical purity is over 99%, the yield is up to 0.98, and the productivity is up to 2.7 g/L per hour. The highest amount of L-lactic acid produced from reducing sugars in xylitol byproducts is 106 g/L, the optical purity is over 99%, and the productivity is up to 2.08 g/L per hour. The B. coagulans strains XZL4 (DSM No. 23183) and XZL9 (DSM No. 23184) of the invention can directly utilize various reducing sugars in xylitol byproducts to produce high amounts of L-lactic acid, which improves the production efficiency at low costs, and the strains are, thus, appropriate for industrial productions.
Abstract:
A method and system for interpolating video pixels is described, in which the value of a first fractional pixel is calculated based on the values of the first set of integer pixels, while the value of a second fractional pixel is calculated based on the values of the second set of integer pixels. The first set of integer pixels is not equal to the second set of integer pixels. For example, the first and second set may contain different integer pixels and may contain different numbers of integer pixels.