Abstract:
In a method for generating a physical layer (PHY) data unit for transmission via a communication channel, information bits to be included in the PHY data unit are encoded using a forward error correction (FEC) encoder. Also, the information bits are encoded according to a block coding scheme, where m copies of each bit are included in the information bits, and one or more bits in the m copies of each bit are flipped. The information bits are mapped to a plurality of constellation symbols, and a plurality of orthogonal frequency division multiplexing (OFDM) symbols are generated to include the plurality of constellation symbols. The PHY data unit is generated to include the plurality of OFDM symbols.
Abstract:
A method of antenna selection, in a MIMO system in which a transmitter having a first plurality of RF chains communicates with a receiver having a second plurality of RF chains, includes transmitting consecutive sounding packets produced by the first plurality of RF chains. The consecutive sounding packets each include a training symbol, and collectively sound a full-size channel for the MIMO system. The method also includes receiving channel state information for each of a plurality of scaled sub-channel estimates determined at the receiver. The channel state information includes at least one of respective gain factors that were applied to the consecutive sounding packets received at the receiver and respective scaling factors that were applied to sub-channel estimates determined at the receiver. The method also includes adjusting power levels applied to the first plurality of RF chains in response to receiving the channel state information.
Abstract:
In a method of calibrating a wireless communication device, a first sounding packet is transmitted from the wireless communication device to a calibration station. A first channel descriptor is generated based on the first sounding packet. A second sounding packet is transmitted from the calibration station to the wireless communication device. A second channel descriptor is generated based on the second sounding packet. The first channel descriptor and the second channel descriptor are obtained at a controller. Calibration coefficients indicative of one or both of phase imbalance and amplitude imbalance between a receive radio frequency (RF) chain and a transmit RF chain at the wireless communication device are generated based on the first and the second channel descriptors. The calibration coefficients are sent from the controller to the wireless communication device.
Abstract:
A first communication device receives a plurality of training signals associated with a transmit beamforming training portion of a current iteration of a beamforming procedure between the first communication device and a second communication device. A receive antenna weight vector (AWV) is applied to an antenna array as each of the plurality of training signals is received. A channel estimate is determined based on reception of the plurality of training signals, and feedback is determined based on the channel estimate. The feedback is transmitted to the second communication device as part of the current iteration of the beamforming procedure.
Abstract:
A method for transmitting a data packet includes prepending to the digital contents of the data packet a preamble including a first preamble field having a plurality of repetitions of a sequence. The method also includes determining according to a specified communication protocol a first transmission power level for the data packet and determining according to the specified communication protocol and the first preamble field an unadjusted transmission power level for the first preamble field. The method further includes determining the presence of one or more power-boost characteristics of the data packet or of an intended receiving client, transmitting the first preamble field at a first adjusted transmission power level if one or more power-boost characteristics are determined to be present, and transmitting a remainder of the data packet at the first transmission power level for the data packet.
Abstract:
A method for processing a preamble of a data unit transmitted via a communication channel includes receiving a signal via a plurality of antennas, applying a plurality of distinct steering vectors to the received signal to generate a plurality of respective outputs, and using the plurality of outputs to perform at least one of carrier sensing and symbol timing synchronization associated with the preamble.
Abstract:
Systems and methods for removing a DC offset from an orthogonal frequency division multiplexed (OFDM) signal transmitted over a plurality of subcarrier frequencies. The system includes a receiver. The system further includes a high pass DC component filter configured to reduce a DC component of the orthogonal frequency division multiplexed signal, the high pass DC component filter shaping noise in the orthogonal frequency division multiplexed signal which results in a non-uniform power spectral density of the noise across the plurality of subcarrier frequencies. The system further includes a noise whitener configured to compensate for the noise shaping by the high pass DC component filter by normalizing the non-uniform power spectral density of the noise across the plurality of subcarrier frequencies.
Abstract:
A first wireless device including a receiver and a transmitter. The receiver includes a channel estimation module configured to receive, from a second wireless device over a communication channel, a training packet and estimate a quality of the communication channel based on the training packet, and a modulation and coding scheme (MCS) determination module configured to determine an MCS based on one or more of the training packet and the estimated quality of the communication channel. The transmitter is configured to transmit, to the second wireless device over the communication channel, an indication of the MCS determined by the MCS determination module.
Abstract:
A correlation magnitude signal is divided into a plurality of samples at a sequence of intervals over a symbol time, where the correlation signal corresponds to a magnitude of a correlation of a signal received at a receiver device with a known sequence. A sample with a highest magnitude value for the symbol time is selected from the plurality of samples. A symbol-synchronization signal that corresponds to an interval of the sequence of intervals containing the sample with the highest magnitude value is provided to a rake receiver system.
Abstract:
Systems and methods are provided for processing a payload portion of a received signal in a single carrier mode or a multiple carrier mode based on a portion of the received signal. A single carrier signaling portion is received at a first rate, and whether the payload portion of the signal is a single carrier signal or a multiple carrier signal is detected from the received single carrier signaling portion. The payload portion of the received signal is received at the first rate and demodulated in a single carrier mode if the detecting determines that the payload portion of the received signal is a single carrier signal, and the payload portion of the received signal is demodulated in a multiple carrier mode if the detecting determines that the payload portion of the received signal is a multiple carrier signal.