Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. The multicast MBMS bearer is associated with a Temporary Mobile Group Identifier (TMGI), and wherein the TMGI is associated with the communication group ID. In one embodiment, the access information comprises mapping information between the TMGI and the communication group ID.
Abstract:
A method for deactivated secondary Component Carrier (CC) measurement in a communications apparatus providing wireless communications services via a first CC in a wireless network includes: determining a switch timing to perform bandwidth extension or frequency adjustment required for performing a deactivated secondary CC measurement; extending an operation bandwidth or adjusting a center frequency of at least one signal processing component included in the communications apparatus at the switch timing, wherein an operation band defined by the operation bandwidth and the center frequency of the signal processing component covers at least a bandwidth of the secondary CC; and performing the deactivated secondary CC measurement after extending the operation bandwidth or adjusting the center frequency. The secondary CC is not able to perform data transmission or reception during a deactivated state.
Abstract:
A method of control signaling in a beamforming system is proposed. A base station allocates a first sets of DL control resource blocks for DL transmission to a plurality of user equipments (UEs) in a beamforming network. Each set of DL control resource blocks is associated with a corresponding set of beamforming weights. The base station also allocates a second sets of UL control resource blocks for UL transmission from the UEs. Each set of UL control resource blocks is associated with the same corresponding set of beamforming weights. The base station transmits cell and beam identification information using a set of control beams. Each control beam comprises a set of DL control resource block, a set of UL control resource block, and the corresponding set of beamforming weights.
Abstract:
A method of maximum output power configuration with UE preference in carrier aggregation is provided. A UE configures multiple component carriers (CCs) with carrier aggregation for communicating with a serving base station in a mobile communication network. The UE determines channel condition of multiple serving cells over the corresponding multiple CCs. The UE then determines maximum output power for each CC based at least in part on the corresponding channel condition of each CC. Finally, the UE transmits power headroom report (PHR) for each CC to the serving base station, wherein the PHR is calculated based on the determined maximum output power. As a result, the reported PH information is channel condition dependent, which can be used by eNB for facilitating better transmission scheduling.
Abstract:
Apparatus and methods are provided for relay-assisted retransmission. In one novel aspect, the remote UE receives data transmission from the source entity through a direct link and retransmission from a relay UE. In one embodiment, the relay UE receives feedback indication from the remote UE, transmits the feedback to the source entity, and retransmits one or more TBs to the remote UE through a SL connection upon detecting one or assisted retransmission triggers. In one embodiment, the feedback is a joint HARQ, wherein a NACK is sent when both the relay UE and remote UE failed, and an ACK is sent when at least one of the relay UE and the remote UE succeeds. In one embodiment, the relay UE retransmits one or more successfully received TBs to the remote UE upon receiving a failure indication from the remote UE or receiving retransmission indication from the source entity.
Abstract:
A method of acquiring timing advance (TA) for neighbor cells to reduce latency and interruption for inter-cell mobility is proposed. A UE is configured with a set of active cells for fast cell-switching. To reduce handover interruption, UE performs early RACH for potential target cells and obtains the TA of the potential target cells. In one novel aspect, for overhead reduction, a single RACH preamble may be received by multiple cells. Using a single RACH preamble, UE acquires TA for multiple cells, aiming at reducing the interruption due to RACH during handover. In another novel aspect, UE reports DL reception timing difference between the serving cell and the neighbor cell, and then adjust the TA for the neighbor cell accordingly.
Abstract:
A beam indication (BI) mechanism is proposed to provide user equipment (UE) information of network (NW) beam(s) for later transmission. UE can then select its UE beam(s) for the later transmission based on the BI. In one embodiment, NW provides beam management configuration to UE via Radio Resource Control (RRC) signaling, and then provides beam indication index signaling to UE via MAC-CE or DCI. The beam management configuration comprises a mapping table between network beams and configured reference signal (RS) resources. The beam indication index signaling indicates one or more preferred beam pair links (BPLs). Upon triggering a beam management procedure by the network, UE is able to identify the beam management procedure and selects corresponding UE beam(s) based on the beam management configuration and the beam indication index signaling.
Abstract:
A method of beam failure recovery request (BFRQ) transmission is proposed. UE can search for UE-specific control channel in a search space that is signaled specifically for monitoring network response of the BFRQ. Furthermore, configurations indicated specifically for BFRQ can be carried by dedicated signaling such as high-layer radio resource control (RRC) signaling. After successfully rebuilding connection, UE assumes the demodulation reference signal (DMRS) ports of UE-specific control channel to be spatially quasi-co-located (QCL-ed) with the reference signals identified during the beam failure recovery procedure.
Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast bearer in a network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. In one embodiment, The UE requests to switch the DL multicast traffic from the multicast MBMS bearer to the unicast bearer upon detecting that the UE is approaching an MBMS coverage boundary. In another embodiment, the UE transmits an indication of preferred target cells to the network before performing a handover and thereby maintaining multicast service continuity of the group communication.
Abstract:
A method of beam failure recovery request (BFRQ) transmission is proposed. In a first step of beam failure detection, UE detects a beam failure condition of the original serving beam. In a second step of new candidate beam identification, UE performs measurements for candidate beam selection. In a third step of beam failure recovery request (BFRQ) transmission, UE transmits a BFRQ message to BS upon the triggering condition for BFRQ transmission is satisfied. In a fourth step of monitoring BS response, UE monitors BS response to decide the success or failure of the BFRQ transmission attempt. In one advantageous aspect, the BFRQ transmission is over dedicated contention-free PRACH or PUCCH resources or over contention-based PRACH resources. Furthermore, a beam failure recovery timer is used to oversee the initiation and the termination of the BFRQ transmission.