摘要:
The wavelength stability of superfluorescent sources is controlled with optical arrangements in which the polarization-dependent gain (PDG) induced by the polarized pump light is reduced. In one apparatus and method, a Faraday rotator mirror is used at the end of the waveguide in the superfluorescent source. In another apparatus and method, the birefringence of the waveguide is exploited in conjunction with a Faraday rotator mirror to further average out the effect of PDG on the mean wavelength difference between the spectral outputs of orthogonal polarization components.
摘要:
An apparatus and a method provide gain flattening in communications systems wherein a large number of optical signals at different wavelengths must be amplified while maintaining signal power within an acceptable range. Because of differences in gain of typical optical amplifiers as a function of wavelength and input power, the signals at different wavelengths are not amplified by the same amounts. Thus, when amplified multiple times, certain signals tend to become severely attenuated to the point of being no longer useable. The present gain flattening apparatus and method cause signals having higher gain-power products to be attenuated by a greater amount in response to Kerr-induced phase shifting such that after multiple stages of amplification, all the signal powers converge toward a small range of acceptable output powers. The apparatus provides amplification, multiple times, of a series of signals with a plurality of wavelengths covering a very wide spectral range, while maintaining the power of all the signals within a small range. The spread of this signal power range is robust against changes in the signal power, against changes in the number of signals, and, to some degree, against changes in the amplifier's pump power. The apparatus design is also robust against manufacturing changes in the parameters of the apparatus' components. The apparatus and invention are preferably implemented as multiple nonlinear Sagnac amplifiers having erbium-doped fiber amplifiers positioned asymmetrically in an interferometer loop.
摘要:
An apparatus modulates the phase of an optical signal. The apparatus includes an optical medium for propagating the optical signal. At least one electrode is positioned in proximity with the medium. The electrode induces an electric field within the medium in response to an AC voltage to produce variations in the index of refraction of the optical medium through the electrostrictive effect. Preferably, the phase of the optical signal is modulated such that polarization components of the optical signal parallel to and orthogonal to the electric field experience an equal phase shift. In certain embodiments, a DC voltage is supplied to the optical medium. Alternatively, the DC voltage within the optical medium may arise from (or be enhanced by) poling the optical medium. Certain embodiments of the present invention include two electrodes positioned on opposite sides of the optical medium. The apparatus is advantageously used in an interferometer to form a device that modulates the amplitude of the optical signal. The apparatus may also be used in an interferometer to form an optical switching device.
摘要:
A new type of fiber filter is useable in optical communication systems. In particular, the fiber filter may be used to flatten the gain of erbium-doped fiber amplifiers (EDFAs). Such gain flattening is important for long-haul, dense (wavelength dependent multiplexed) WDM communication systems. The filter includes a periodic mechanical structure pressed against the side of a single-mode fiber to induce a wavelength-dependent loss in a signal propagating in the fiber core by coupling the signal to fiber cladding modes. The mechanical structure is a periodic comb of small ridges. Each ridge induces a local index change in the fiber via the photoelastic effect. For coupling to the right cladding modes, the period of the grating (and the comb) is in the range of few hundreds of microns. Thus, the grating is easy to fabricate with standard machining equipment.
摘要:
An optical fiber has two or more cores with respective faces on the fiber's ends. The faces are preferably oriented so that optical radiation can be coupled into or out of the individual cores, thereby permitting, for example, optical radiation from the various cores to be spatially resolved in the far field. The faces can be formed on the fiber by polishing the fiber at an angle with respect to the cores, i.e., with respect to the optical paths traversed by the optical radiation passing through the fiber.
摘要:
An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.
摘要:
A side pumped, fiber optic amplifier comprises an optical fiber, having a first refractive index, formed of a laser material, such as Nd:YAG. A jacket, which surrounds the optical fiber, has a second refractive index, lower than the first refractive index. This jacket is cone shaped and tapers from a large end to a small end. High power laser diodes are mounted on the large end to introduce pump light to pump the optical fiber material. The cone-shaped jacket focuses this pump light to an interaction region at the small end, where the jacket material is quite thin, e.g. on the same order of magnitude as the diameter of the optical fiber. The focused light is absorbed by the optical fiber in this interaction region, and causes an electronic population inversion in the laser fiber material. A signal propagating through the optical fiber stimulates spontaneous emission from the optically excited laser material, thereby resulting in amplification of the signal.
摘要:
A fiber optic recirculating memory comprises a splice-free length of optical fiber which forms a loop that is optically closed by means of a fiber optic coupler. The coupler couples an optical signal input pulse to the loop for circulation therein, and outputs a portion of the signal pulse on each circulation to provide a series of output pulses. A pump source is included to pump the fiber loop with a pump signal having sufficient intensity to cause stimulated Raman scattering in the fiber loop, and thereby cause amplification of the circulating signal pulse. The fiber characteristics, coupler characteristics, and a pump power are selected to yield a Raman gain which compensates for the total round-trip losses in the fiber loop, so as to provide an output pulse train of constant amplitude pulses. The invention may be implemented utilizing a standard coupler with a pump signal modulation technique. The pump signal is input to the loop as a series of pulses having a duration and a periodicity chosen to prevent overlap of recirculating pump pulses with input pump pulses until at least two circulations of the loop, which minimizes pump power fluctuations and will therefore enhance output signal stability.
摘要:
A passive, frequency selective, fiber optic multiplexer, comprises a directional coupler in which a pair of single mode optical fibers are accurately positioned to provide evanescent field coupling, typically by polishing a portion of the cladding from each of said fibers to place the respective cores of said fibers within the evanescent field of light in the other fiber. The coupling efficiency of a coupler constructed in this manner is wavelength dependent, and provides over-coupling, that is, the capability of transferring light, virtually entirely, back and forth between the fibers within the coupler. The wavelength dependent nature of the evanescent field coupling permits multiplexing, specifically between a pair of wavelengths, one of which is coupled in its entirety from a first fiber to a second fiber, and the other of which is essentially uncoupled. By increasing the number of total transfers of the light signals between the pair of fibers, the frequency resolution of the multiplexer may be optimized for light signals of virtually any frequency separation.
摘要:
A pair of small diameter optical fibers are arranged in a side-by-side configuration, the first fiber providing a passive guide for pump light, and the second fiber formed of a material, such as Nd:YAG which has amplifying properties at the signal frequency. The signal to be amplified propagates through the second fiber from the active material, resulting in amplification of the signal. The first fiber is pumped from one or both ends, utilizing a cone shaped rod which is optically coupled thereto. A large diameter beam of collimated pump light enters the cone shaped rod, where total internal reflections on the cone walls compress the beam to a small, fiber-size diameter for absorption by the active fiber. The light input to the cone-shaped rod is produced by plural, high power laser diodes, and is collimated by microlenses. By utilizing the cone-shaped rod to couple light from the high power diode lasers to the pump fiber, high pump power densities can be achieved, yielding increased amplification.