摘要:
A display element according to the present invention is provided with a pair of substrates, at least one of which is transparent; a medium between the substrates, wherein optical anisotropy magnitude of the medium is changeable by and according to an electric field applied thereon; at least one pair of electrodes for applying, on the medium, the electric field substantially parallel to the substrates; and a shielding electrode overlapping at least a display portion of at least one of the substrates, and used for shielding the display element from static electricity.
摘要:
A display element includes a dielectric material layer 3, provided between a pair of substrates (substrates 1 and 2), which is made of a medium showing optical isotropy when no electric field is applied and showing optical anisotropy when an electric field is applied. Further, comb-shaped electrodes 4 and 5 are provided face to face on the substrate 1 so as to be positioned in a surface which faces the substrate 2. Furthermore, polarizing plates 6 and 7 are respectively provided on rear surfaces with respect to the counter surfaces of the substrates 1 and 2. Thus, it is possible to realize the display element which has a wide driving temperature range, a wide viewing angle property, and a high-speed response property.
摘要:
A display element has a arrangement that allows the pixel to have at least two domains in which the medium shows optical anisotropies of different directions when a force (for example, an electric field) is applied or when no force is applied. It is preferable that directions of the optical anisotropies occurred in the respective domains when the electric field is applied respectively have 45 degrees±10 degrees with absorption axes of polarizers, and that the directions of the optical anisotropies occurred in the respective domains when the electric field is applied make 90 degrees±20 degrees.
摘要:
A display panel includes (i) a first substrate and a second substrate, which face each other, (ii) a medium layer being sandwiched between the first and second substrate, and (iii) first electrodes and second electrodes being provided on that side of the first substrate which faces the second substrate, the display panel performing display operation by generating an electric field between the first and second electrodes. The display panel is configured such that the medium layer comprises a medium that is optically isotropic when no electric field is applied thereon, and whose optical anisotropy magnitude is changeable by and according to the electric field applied thereon; and the first and second electrodes are transparent electrodes, and a distance between the first and the second electrodes is shorter than a distance between the first substrate and second substrate. This configuration attains gives the display panel high response speed and high transmissivity.
摘要:
A liquid crystal display according to the invention includes a liquid crystal display element (100) having a liquid crystal layer (4) containing liquid crystal molecules oriented so as to assume a bend alignment when an image display is being made, and at least one retardation plate for compensating for a retardation of the liquid crystal layer, wherein the display is made by varying the retardation of the liquid crystal layer in accordance with video signals inputted from outside to vary the transmittance of the liquid crystal display element to light for display, characterized in that: the liquid crystal display element (100) includes a plurality of red pixels for displaying a red color, a plurality of green pixels for displaying a green color, and a plurality of blue pixels for displaying a blue color; and a thickness (53B) of the liquid crystal layer (4) associated with the blue pixels is larger than a thickness (53R,53G) of the liquid crystal layer associated with the red pixels and/or the green pixels.
摘要:
A display element according to the present invention is provided with a pair of substrates, at least one of which is transparent; a medium between the substrates, wherein optical anisotropy magnitude of the medium is changeable by and according to an electric field applied thereon; at least one pair of electrodes for applying, on the medium, the electric field substantially parallel to the substrates; and a shielding electrode overlapping at least a display portion of at least one of the substrates, and used for shielding the display element from static electricity.
摘要:
Before starting the regular display in a liquid crystal display device of the bend alignment type, it is necessary to transition all the pixel regions in the entire display portion uniformly from splay alignment into bend alignment. However, conventionally, when applying a simple ac voltage, the transition sometimes does not take place, and when it does take place, the transition time is very long, and display defects due to alignment defects tend to occur. In the method for driving a liquid crystal display device with OCB cells according to the present invention, a step of applying between an electrode 22 and a pixel electrode 23 an ac voltage superimposed with a bias voltage, and a step of applying zero voltage or a low voltage to the substrates are repeated in alternation preceding the begin of the regular display operation and the regular display operation is carried out after all pixels have transitioned into bend alignment.
摘要:
An active matrix type liquid crystal display composed of a liquid crystal cell 124 is described. In the liquid crystal cell 124, liquid crystals at the upper and lower interfaces of a liquid crystal layer 122 inserted between an array substrate 106 having pixel electrodes 128 and an opposed substrate 105 having an opposed electrode 127 have pretilt angles opposite to each other in a positive/negative sense and are aligned in parallel with each other, forming a spray alignment. This liquid crystal display performs displaying by bend-aligning such a liquid crystal cell 124. The pixel electrodes 128 are formed on a flattening film 100 for covering switching elements 123 or wiring electrodes flat. With this arrangement, a spray to bend alignment transition can be reliably, easily caused in a short time within the liquid crystal cell pixels, so that an OCB mode liquid crystal display free from alignment defects and having high picture quality can be achieved.
摘要:
There are disclosed methods for driving liquid crystal display apparatuses for certainly completing in a short time to performing a transition of liquid crystal molecules to a displayable alignment in liquid crystal display apparatuses such that an initial alignment of the liquid crystal molecules is different from the displayable alignment, typically an optically compensated bend mode liquid crystal display apparatus. A voltage is applied to a liquid crystal layer until display area in the liquid crystal layer is transformed to the displayable alignment. After the completion of the transition, a backlight is switched on to shift to a display-driving mode. In order to complete the transition in a short time, voltage pulse under the conditions (such as a frequency and a voltage value) determined in accordance with a temperature of a liquid crystal panel is applied to the liquid crystal layer.
摘要:
A liquid crystal display device having a pixel electrode, a counter electrode, and a liquid crystal between the electrodes. Liquid crystal molecules in contact or near the respective opposed surfaces of the electrodes have specified pretilt angles as a result of the conditioning of those surfaces. When no voltage is applied, the liquid crystal is in a splay alignment state; applying voltage prior to image display causes a transition of transformation of the splay alignment state to a bend alignment state; image display is carried out under the bend alignment state. Transition from the splay alignment state to the bend alignment state is promoted by having a large pretilt angle domain formed on at least one of the electrode surfaces causing a larger pretilt angle of liquid crystal molecules than is present in a region surrounding the large pretilt angle domain.