Abstract:
A plurality of modules interact to form an adaptive network in which each module transmits and receives data signals indicative of the proximity of objects. A central computer accumulates the data produced or received and relayed by each module. One of the modules is operable as a leaf node having a sleep mode to conserve energy and an interactive mode. The central computer can send a message to the leaf node commanding it to stay awake in order to receive subsequent communications.
Abstract:
Techniques for providing real-time animation for a personalized cartoon avatar are described. In one example, a process trains one or more animated models to provide a set of probabilistic motions of one or more upper body parts based on speech and motion data. The process links one or more predetermined phrases that represent emotional states to the one or more animated models. After creation of the models, the process receives real-time speech input. Next, the process identifies an emotional state to be expressed based on the one or more predetermined phrases matching in context to the real-time speech input. The process then generates an animated sequence of motions of the one or more upper body parts by applying the one or more animated models in response to the real-time speech input.
Abstract:
A plurality of modules interact to form an adaptive network in which each module transmits and receives data signals indicative of proximity of objects. A central computer accumulates the data produced or received and relayed by each module for analyzing proximity responses to transmit through the adaptive network control signals to a selectively-addressed module to respond to computer analyses of the data accumulated from modules forming the adaptive network. Interactions of local processors in modules that sense an intrusion determine the location and path of movements of the intruding object and control cameras in the modules to retrieve video images of the intruding object. Multiple operational frequencies in adaptive networks permit expansions by additional networks that each operate at separate radio frequencies to avoid overlapping interaction. Additional modules may be introduced into operating networks without knowing the operating frequency at the time of introduction. Remote modules operating as leaf nodes of the adaptive network actively adapt to changed network conditions upon awaking from power-conserving sleep mode. New programs are distributed to all or selected modules under control of the base station.
Abstract:
A plurality of modules interact to form an adaptive network in which each module transmits and receives data signals indicative of physical properties sensed at the modules. A new module is joined in the adaptive network in an expedient manner. The new module transmits a burst of beacon messages after the interactive module is activated to discover neighboring interactive modules deployed and operating in the adaptive network. The neighboring interactive module stays in a sleep-mode of low-power expenditure. The beacon messages persist for a first interval longer than a second interval during which the neighboring interactive modules remain in the sleep mode. After receiving the beacon messages, one or more neighboring interactive modules transmit response messages to the new interactive module. The new interactive module receives the response messages and selects a neighboring interactive module for communication based on the received response messages. The new module can also include an indicator for indicating discovery of a neighboring interactive module with which a reliable wireless link can be established.
Abstract:
A system and method for imaging and identifying non-viable myocardial tissue in a patient's myocardium is disclosed. Images of a section of the myocardium are obtained. An endocardial border and epicardial border of the section of the myocardium is segmented. The section of the myocardium is divided into sectors. One or more selected features of the sectors of the myocardial wall are measured and applied to a decision surface. A determination is made as to whether each sector contains viable or non-viable myocardial tissue. An image that shows each sector of the myocardial wall and an indication of its viability is displayed.
Abstract:
An example-based method and system for electronic display color calibration is provided. By comparing the colors of commonly available objects with a color database under a controlled lighting condition, the user adjusts the gain and offset parameters of the Red, Green and Blue color components of the display. Two different methods are provided, wherein one method involves manipulating the comparison colors in the RGB color space, and the other method involves manipulating the comparison colors in the CIE x-y plane. Two different systems that incorporate the example-based color calibration methods are also provided, wherein one system directly implements the calibration method in the television system, while the other system implements the calibration method as a separate tool for viewers to calibrate the color of their displays.
Abstract:
A method and apparatus for detecting and locating objects of interest in video sequences is provided. A frame is defined as an image belonging to video sequences. Each frame with the same or different size of original input sequences is searched by the same or different size window efficiently for detecting objects. The characteristics of temporal redundancies in video sequences are used in detecting objects in video sequences.
Abstract:
An image processing method and system removes quantization artifacts in digital video/images. The local neighborhood of the current pixel is segmented based on a pre-defined quantization level to generate a segment containing the current pixel. Then, the luminance values of the pixels within the segment are low-pass filtered. Several sub-gains are computed based on measurements of the segment, and the sub-gains are multiplied together and filtered to obtain a final gain value. The final gain value is used to linearly interpolate between the original luminance value and the filtered luminance value of the pixel to obtain an output luminance value.
Abstract:
A super dithering method of color video quantization maintains the perceived video quality on a display with less bit depth of color than the input video. Super dithering relies on both the spatial and temporal properties of human visual system, wherein spatial dithering is applied to account for human eye's low pass spatial property, while temporal dithering is applied to achieve the quantization level of the spatial dithering.
Abstract:
An adaptive temporal noise reduction method that adaptively combines motion adaptive filtering results and motion compensated results to reduce Gaussian additive noise in video sequences is described herein. The system determines the motion detection and motion compensation results from the current frame and the filtered previous frame. Measurements on the video are used to determine a probabilistic measure of noise that is employed to adaptively combine the motion detection and motion compensation results.