Abstract:
A display device including a first substrate, a second substrate, sensing electrodes disposed on the second substrate and to sense an input, sensing wirings electrically connected to the sensing electrodes, an input sensing panel including sensing pads electrically connected to the sensing wirings, and a coupling member to couple the first substrate and the second substrate, wherein the sensing wirings respectively include transparent conductive wirings disposed on the second substrate and metal wirings disposed on the transparent conductive wirings and electrically connected to the transparent conductive wirings, and each of the sensing pad includes a transparent conductive pad disposed on the second substrate and connected to the transparent conductive wiring.
Abstract:
A method of manufacturing an organic light-emitting display apparatus includes forming a semiconductor layer on a substrate; forming a gate electrode on the semiconductor layer; forming an interlayer insulating film on an entire surface of the substrate to cover the gate electrode; forming a source electrode and a drain electrode on the interlayer insulating film; and forming a pixel electrode and a pixel-defining film on the source electrode and the drain electrode, wherein the forming of the pixel electrode and the pixel-defining film includes forming the pixel electrode and the pixel-defining film by using one mask.
Abstract:
A thin film transistor including a substrate; a semiconductor layer disposed over the substrate; a gate insulting film disposed over the semiconductor layer; and a gate electrode. The semiconductor layer includes a channel region, a source region, and a drain region. The gate insulating film includes a first region and a second region. The second region borders the first region. The gate electrode is disposed over the first region. A step shape is formed where the second region meets the first region.
Abstract:
A display apparatus includes a pixel including a first area and a second area. Light is emitted from the first area and ambient light is transmitted through the second area. A pixel circuit unit is disposed in the first area, the pixel circuit unit including at least one thin-film transistor (TFT). A first insulating layer covers the pixel circuit unit. A first electrode is disposed on the first insulating layer, and is electrically connected to the pixel circuit unit. A second insulating layer covers an edge of the first electrode. A second electrode is aligned with the first electrode and is disposed in at least the first area. An intermediate layer is disposed between the first and second electrodes and includes an emission layer. An inorganic insulating film is disposed in the second area of the pixel. An organic insulating film covers the inorganic insulating film in the second area.
Abstract:
A thin film transistor including a substrate; a semiconductor layer disposed over the substrate; a gate insulting film disposed over the semiconductor layer; and a gate electrode. The semiconductor layer includes a channel region, a source region, and a drain region. The gate insulating film includes a first region and a second region. The second region borders the first region. The gate electrode is disposed over the first region. A step shape is formed where the second region meets the first region.
Abstract:
An organic light-emitting display apparatus includes a substrate, an active layer of a thin film transistor formed over the substrate, a gate insulating layer formed over the active layer, a gate electrode of the thin film transistor formed over the gate insulating layer, an interlayer insulating layer formed over the gate electrode and the first electrode, a source electrode and a drain electrode formed over the interlayer insulating layer, a pixel electrode including a first region in direct contact with an upper surface of the interlayer insulating layer and a second region in direct contact with an upper surface of one of the source electrode and the drain electrode, a pixel defining layer covering the source and drain electrodes and including an opening which exposes the first region of the pixel electrode in an area that does not overlap the thin film transistor.
Abstract:
An organic light-emitting display apparatus includes a substrate; a plurality of pixels disposed on the substrate, each of the plurality of pixels including a first region through which light is emitted and a second region through which external light is transmitted; a pixel circuit unit disposed in the first region of each of the plurality of pixels and including at least one thin-film transistor (TFT); a black matrix covering the pixel circuit unit and including a first opening corresponding to the second region; a via-insulating film disposed on the black matrix and including a second opening corresponding to the second region; and a light-emitting device disposed in the first region on the via-insulating film.
Abstract:
An organic light-emitting display apparatus includes a substrate, and a thin-film transistor and a capacitor formed over the substrate. The apparatus further includes an interlayer insulation layer, a first organic insulating layer and a second organic insulation layer sequentially stacked over the substrate and covering the thin-film transistor and a capacitor. The first organic insulation layer includes a first hole that does not overlap with the thin-film transistor and the capacitor when viewed in a direction perpendicular to a major surface of the substrate. The apparatus further includes a pixel electrode formed over the interlayer insulating layer and the first organic insulating layer. The pixel electrode includes a first portion disposed inside the first hole and a second portion disposed over the first organic insulating layer and outside the first hole. The apparatus includes a light emission layer and an opposite layer formed over the pixel electrode.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing the same are disclosed. In one aspect, the method includes performing a first mask process of forming an active layer of a thin-film transistor (TFT) and a first electrode of a capacitor over a substrate and performing a second mask process of i) forming a gate insulating layer and ii) forming a gate electrode of the TFT and a second electrode of the capacitor over the gate insulating layer. The method also includes performing a third mask process of i) forming first and second interlayer insulating layers and ii) removing portions of the first and second interlayer insulating layers so as to form a contact hole that exposes a portion of the active layer. The method also includes performing a fourth mask process of forming a pixel electrode over the second interlayer insulating layer.
Abstract:
An organic light-emitting display apparatus includes a substrate; a plurality of pixels disposed on the substrate, each of the plurality of pixels including a first region through which light is emitted and a second region through which external light is transmitted; a pixel circuit unit disposed in the first region of each of the plurality of pixels and including at least one thin-film transistor (TFT); a black matrix covering the pixel circuit unit and including a first opening corresponding to the second region; a via-insulating film disposed on the black matrix and including a second opening corresponding to the second region; and a light-emitting device disposed in the first region on the via-insulating film.