Abstract:
A light emitting device includes first and second electrodes spaced apart from each other on a substrate, at least one bar-type LED having a first end on the first electrode and a second end on the second electrode, and an insulative support body between the substrate and the bar-type LED. The at least one bar-type LED has a length greater than a width.
Abstract:
A transistor array panel is manufactured by a method that reduces or obviates the need for highly selective etching agents or complex processes requiring multiple photomasks to create contact holes. The panel includes: a substrate; a buffer layer positioned on the substrate; a semiconductor layer positioned on the buffer layer; an intermediate insulating layer positioned on the semiconductor layer; and an upper conductive layer positioned on the intermediate insulating layer, wherein the semiconductor layer includes a first contact hole, the intermediate insulating layer includes a second contact hole positioned in an overlapping relationship with the first contact hole, and the upper conductive layer is in contact with a side surface of the semiconductor layer in the first contact hole.
Abstract:
A thin film transistor array panel includes a substrate; a data line disposed on the substrate; a buffer layer disposed on the substrate and spaced apart from the data line in a plan view; a thin film transistor disposed on the buffer layer, the thin film transistor including an oxide semiconductor layer; and a pixel electrode connected to the thin film transistor.
Abstract:
Provided is a display device including: an insulation substrate; a thin film transistor disposed on the substrate; a pixel electrode disposed on the thin film transistor; a roof layer formed to be spaced apart from the pixel electrode with a microcavity therebetween and including a support member; and a liquid crystal layer filling the microcavity, in which the microcavity includes a plurality of microcavities having a semicircular cross section arranged along an extending direction of the gate line and extending in the extending direction of the data line.
Abstract:
An image signal provided from an external device is converted into a data signal such that an image is displayed on a display panel, and a first light control signal and a second light control signal are output. A backlight unit provides the display panel with a first color light and a second color light different from the first color light in response to the first light control signal and the second control signal. The display panel driving unit also determines a pulse width of each of the first light control signal and the second light control signal according to a color characteristic of the image signal.
Abstract:
A display device includes a light source generating light and a thin film transistor array panel including a pixel electrode and a common electrode. The display includes an upper panel and a quantum rod layer positioned between the thin film transistor array panel and the upper panel. The display includes an upper polarizer attached outside of the upper panel, in which the quantum rod layer includes quantum rods, and an arrangement direction of the quantum rods is controlled by an electric field generated by the pixel electrode and the common electrode, light is polarized according to the controlled arrangement direction, and the polarizer controls the transmission degree of the polarized light from the quantum rods according to the arrangement direction of the quantum rods.
Abstract:
A liquid crystal display device which may prevent a color mixing phenomenon and a driving method thereof, the liquid crystal display device including a first substrate and a second substrate facing each other; a thin film transistor disposed inside the first substrate; a color conversion layer disposed inside the second substrate and including a plurality of quantum rods; a liquid crystal layer disposed between the first substrate and the second substrate; a first polarizer disposed outside the first substrate; and a second polarizer disposed outside the second substrate.
Abstract:
A 3D image display device includes: a backlight unit including a first color light source and a second color light source, which are alternately turned on; a display panel on a front side of the backlight unit and including a pixel, where the pixel includes a first subpixel including a first color filter and a second subpixel including a second color filter; a patterned circular polarizer on a front side of the display panel, extending substantially in a first direction, and including a first circular polarization part and a second circular polarization part having widths substantially the same as widths of the first subpixel and the second subpixel, respectively; and glasses including a left lens and a right lens, where each of the left lens and the right lens includes a plurality of circular polarization patterns and a shutter glass panel which turns on and off each circular polarization pattern.
Abstract:
A display device includes a pixel in a display area. The pixel includes: spaced apart first and second electrodes; a first insulating layer on the first electrode and the second electrode and between the first electrode and the second electrode and having a first etch selectivity; a first insulating pattern on the first insulating layer between the first electrode and the second electrode, and having a second etch selectivity; a light emitting element on the first insulating pattern; a second insulating pattern having the second etch selectivity and being on one area of the light emitting element such that a first end and the second end of the light emitting element are exposed; and third and fourth electrodes configured to electrically connect the first end and the second end of the light emitting element to the first and second electrodes, respectively.
Abstract:
An apparatus for manufacturing a light emitting display device includes a stage, and at least one electric-field application module disposed on at least one side of the stage. The apparatus further includes at least one of: at least one printing head disposed above the stage, and a heating element disposed adjacent the stage. The at least one electric-field application module includes a probe head having at least one probe pin, and a driver connected to the probe head to move the probe head.