Abstract:
A method serves for starting a polyphase electric motor which is operated in a star connection. The method conductively bridges at least one winding part of a phase of the motor and electrically disconnects the bridged winding part, in order in this manner, to supply a higher voltage to the remaining, electrically effective windings, and thus to increase the flow of current and thus the torque.
Abstract:
A method is provided for degassing a transport chamber (1) of a metering pump. The method is based on performing impulse generation, wherein gas bubbles arising from the gas-forming fluid and adhering to the inner surfaces in the transport chamber (1) are released from the surfaces, wherein the gas bubbles (4.4′, 8.8′) present in the transport chamber (1) accumulate, perform a motion (c) in the direction of the pressure valve (6), and form an accumulated gas bubble (7) on the transport chamber side of the pressure valve (6). An increase in pressure causes the accumulated gas bubble present at the pressure valve (6) to escape from the transport chamber (1) as discharged gas bubbles (7′) into the pressure line. A metering pump having a device present in the transport chamber for performing the impulse generation is also provided.
Abstract:
A frequency converter includes a housing, which is designed and envisaged for the peripheral assembly on an electric motor. The base of the housing is provided in the middle region on the outside with longitudinal ribs and is connected to heat-producing components of the power circuit of the frequency converter, is provided in outer regions with cooling ribs which are arranged on the outside transversely or obliquely to the longitudinal ribs, and on the inside is connected in a heat-conducting manner to heat-producing components of the input circuit and/or output circuit.
Abstract:
The device for energy-optimization on operation of several centrifugal pumps controlled in rotational speed, in a hydraulic installation, begins firstly with determining which pumps as pilot pumps are assigned directly to a consumer and which pumps are hydraulically connected in series upstream of the pilot pumps. Thereafter, one or more energy-optimization circuits are formed, which in each case consist of one or more pilot pumps and of one or more pumps connected in series upstream, which deliver into the pilot pumps, wherein the energy-optimization circuits are selected such that the pumps connected in series upstream in each case are assigned to only one energy-optimization circuit, whereupon the energy-optimization circuits are energy-optimized with respect to the pumps.
Abstract:
A pump unit is provided having a wet-running electric motor, wherein a rotor of the pump unit can be driven by the electric motor at a maximum speed of greater than 20,000 rev/min, and the rotor is sealed off axially in the region of a suction port.
Abstract:
An impeller (2) for a pump is designed as a casting and includes at least one blade (4). The impeller (2), when casting, is molded by way of at least two core parts (14, 16). Partition lines (26, 28) between the at least two core parts (14, 16) are distanced to an end-edge (10) of the at least one blade. The end-edge is at a front in a flow direction (S).
Abstract:
The invention relates to a pump system comprising at least one pump unit, a control unit for controlling the pump unit and at least one sensor, wherein the sensor is connected to a data detection module which is spatially separate from the control unit and detects the output signals of the sensor, the data detection module comprises an output interface, at which it provides the detected sensor signals and/or data derived therefrom, and the control unit is provided with an input interface for the acquisition of signals or data from the output interface.
Abstract:
A housing unit (22) for a heating device with two heating circuits, one for space heating and another for service water heating, includes a pump housing (23) for a recirculation pump (8). The housing unit (22) encompasses a switching valve for switching the heating circuits, and in its rear installation position exhibits at least one port to directly connect a plate heat exchanger (6) for heating service water. An opening (29) for the return of the space heater is arranged on one side of the housing unit. The housing unit incorporates an inlet chamber (28), which is adjoined by the inlet mouth (26) of the pump (8), and into which two channels empty, of which one or the other can be optionally closed by a valve body (32), and of which one channel leads to the line port (30) for the return, and the other channel leads to a port of the plate heat exchanger (6).
Abstract:
A method for injection molding a pump impeller (1) of plastic, with which the cores which define the flow channels (8) in the inside of the impeller (1), are formed in each case of at least two core parts (26, 30). After the injection molding, a first core part (26) is firstly pulled out of the flow channel (8) and subsequently, an additional relative movement between the impeller (1) and the core part (30) is effected in a direction transverse to the pulling direction of the second core part (30), before or during the pulling-out of a second core part (30).
Abstract:
A method produces electronic components in particular electronic sensors for pressure and differential pressure measurement. Firstly, the semiconductor structure of the electronic components is produced on a wafer. An insulating oxide layer is then applied. A protective metal layer is subsequently applied. The metal layer is applied in sections only in those regions of the wafer in which no splitting, for example by mechanical separation, occurs later. The electronic components thus formed in the wafer are then divided up into individual elements.