Abstract:
This invention relates to an organic light emitting diode display device that is adaptive for preventing a characteristic change of a device which drives the organic light emitting diode and for securing reliability of the device. The organic light emitting diode display device includes: a pixel array having a plurality of scan lines and a plurality of data lines that cross each other, a plurality of power voltage supply lines to which a high level power supply voltage is supplied and that are substantially parallel to the data lines, a plurality of reset lines substantially parallel to the scan lines, a plurality of organic light emitting diodes that emit light due to the high level power supply voltage from the power voltage supply line, and a plurality of organic light emitting diode drive circuits that drive the organic light emitting diode with data from the data line in response to a scan signal from the scan line and that is initialized in response to a reset signal from the reset line; a scan drive circuit that supplies the scan signal to the scan lines; a reset drive circuit that supplies the reset signal to the reset lines that initializes the organic light emitting diode drive circuit; and a data drive circuit that supplies the data to the data lines respectively, wherein the scan drive circuit and the reset drive circuit are on a substrate including the pixel array.
Abstract:
A transflective type LCD device and a method of fabricating the same are discussed. According to an embodiment of the present invention, the transflective type LCD device includes a plurality of gate lines and a plurality of data lines formed on a first substrate to define at least one pixel region having a reflection area and a transmission area, a thin film transistor formed on a crossing point of the plurality of gate lines and the plurality of data lines, a first insulating layer formed on the first substrate including the thin film transistor, a pixel electrode formed on the first insulating layer and electrically connected with the thin film transistor, a second insulating layer formed corresponding to the reflection area on the pixel electrode and having a predetermined dielectric constant, and a reflection plate formed on the second insulating layer.
Abstract:
A thin film transistor (TFT) liquid crystal display panel and fabrication method are described. The panel has a data line and a gate line connected with a TFT and formed on the same layer. One of data or gate lines is discontinuous and the other is continuous in a pixel region such that the continuous line bisects the discontinuous line. A passivation film protects the TFT. Contact holes penetrate the passivation film and expose segments of the discontinuous line. A contact electrode connects the segments through the contact holes.
Abstract:
An LCD device, which is cost effective, is discussed. According to one embodiment, the LCD device includes a timing controller to generate an initial POL signal; a signal stabilizer to receive the initial POL signal from the timing controller and a constant voltage from a source, and to generate a stabilized POL signal using the received constant voltage and the received initial POL signal; and a common voltage generator to generate a common voltage signal using the stabilized POL signal and to supply the generated common voltage signal to an LCD panel.
Abstract:
A display device includes a data line; first and second gate lines; a first pixel including a first switching element, the first switching element connected to the data line and the first gate line; and a second pixel including a second switching element, the second switching element connected to the data line and the first and second gate lines.
Abstract:
A method of driving a liquid crystal display device having a plurality of gate lines, a plurality of data lines and a plurality of pixel electrodes includes: applying sequentially a gate signal to the plurality of gate lines, the gate signal being applied to odd gates lines of the plurality of gate lines for a first pulse time period and being applied to even gate lines of the plurality of gate lines for a second pulse time period shorter than the first pulse time period; and supplying a data signal to each of the plurality of data lines.
Abstract:
A liquid crystal display device includes a first transistor that outputs a charge share voltage to a data line in response to a first output control signal. A second transistor outputs a pre-charge voltage, which is greater than the charge share voltage, to the data line in response to a second output control signal which is delayed in phase from the first output control signal. A third transistor outputs a data voltage to the data line in response to at least one of the first and second output control signals. A logic circuit controls the transistors in response to the output control signals and a polarity control signal that controls the polarity of the data voltage.
Abstract:
An inclined carrier transferring apparatus for use inline sputtering equipment. The inclined carrier transferring apparatus includes rollers and a guiding portion. The rollers transfer and support the bottom of a carrier. The guiding portion is installed diagonally with respect to the rollers, to support the top of the carrier in a non-contact manner.
Abstract:
A module for transferring a PCB including a first transfer body that is translatable along a first moving path to transfer a first PCB and a second transfer body that is translatable along a second moving path to transfer a second PCB with the second transfer body being formed with an aperture therein. Additionally the first transfer body is adjustable from a first position where the first transfer body does not fit through the aperture to a second position wherein the first transfer body can fit within the aperture.
Abstract:
An apparatus and method for driving an image display device is disclosed, in which data signals are transmitted in a multilevel to reduce transmission frequencies, power consumption and transmission lines. The apparatus for driving an image display device includes a display panel including an image display unit for displaying images, a plurality of data driver integrated circuits supplying image signals to the image display unit, and a timing controller converting externally supplied i bit digital source data (i is a positive number) to a plurality of voltage levels to supply the converted voltage levels to the respective data driver integrated circuits and controlling the data driver integrated circuits.