Abstract:
In the production method of the invention, a cyclic aldehyde having an alkyl group and/or a cycloalkyl group directly bonded to a skeletal ring and a formyl group directly bonded to the skeletal ring is brought into contact with ammonia and oxygen in vapor phase in the presence of a catalyst. As a result thereof, the formyl group is selectively ammoxidized into a cyano group to convert the cyclic aldehyde into a corresponding cyclic nitrile. The method enables a long-term, high-yield production of the cyclic nitrile using a reduced amount of ammonia.
Abstract:
There is disclosed a process for producing a nitrile compounds by ammoxidation of a carbocyclic or heterocyclic compound having organic substituent(s) by reacting the compound with ammonia and an oxygen-containing gas, wherein unreacted ammonia is recovered from the reaction product gas and recycled to the reaction system. In the first process of the present invention, the ammoxidation is conducted by vapor-phase catalytic reaction in the presence of a fluid catalyst containing at least one metal oxide selected from the group consisting of vanadium oxide, molybdenum oxide and iron oxide while controlling a water concentration of a gas fed to a reactor to 12% by volume or lower by adjusting a water content of the recovered ammonia by distillation, thereby avoiding deterioration in activity of the catalyst due to recycle of the recovered ammonia. As a result, it is possible to stably obtain the aimed product at a high yield for a long period of time. In the second process of the present invention, after separating the nitrile compounds from the reaction product gas, unreacted ammonia and hydrogen cyanide contained in the residual gas are absorbed into water. Then, the obtained solution is distilled under a pressure of 0.2 to 0.7 MPa to recover ammonia and hydrogen cyanide from the residual gas and recycle these compounds to reaction system. As a result, the ammonia and hydrogen cyanide can be efficiently recovered at the same time, and it is possible to not only reduce costs required for treatment of wastes or the like, but also stably obtain the aimed nitrile compounds at a high yield for a long period of time.
Abstract:
This invention relates to a method for preparing acrylonitrile by ammoxydation using a multi-story quenching tower. The method comprises the steps of supplying the reacted gas into the first quenching chamber of the multi-story quenching tower, said first quenching chamber has a water supply pipe equipped with spray nozzles at a two-dimensional density of more than 2 nozzles/m.sup.2 for the sectional area of the multi-story quenching tower and contacting the reacted gas with 5 T or more of water per 1 T of the reacted gas fed from the nozzles.
Abstract:
Catalysts having the general formula:V.sub.1 Bi.sub.a Sb.sub.b Fe.sub.c X.sub.d Y.sub.c Z.sub.f O.sub.gwherein,X=Mo, Cu, W, Nb, Te, P, Sn, Ge, AsY=Co, Ni, Ce, La, Mn, CrZ=Alkali, alkaline earth, B, Tl and,a=0.1-10,b=0.01-20,c=0.01-5,d=0-5,e=o-3,f=0-1, and g is determined by the valance requirements of the elements present,are produced by first forming and calcining an iron-antimony oxide composition which is subsequently combined with compounds of vanadium, bismuth and other elements. The catalysts are useful in the formation of phthalonitriles from the reaction of xylenes with oxygen and ammonia at elevated temperatures.
Abstract:
The present invention relates to a catalyst which comprises a vanadium oxide, a chromium oxide, a molybdenum oxide and a boron oxide supported on a silica carrier. This catalyst is suitable for use in the production of aromatic nitriles from alkyl-substituted aromatic compound by the catalytic reaction of a gas mixture containing an alkyl-substituted aromatic compound, ammonia and oxygen or a gas containing molecular oxygen over a catalyst. The present invention further relates to a process for producing the aromatic nitriles using said catalyst.
Abstract:
The present invention relates to a catalyst which comprises a vanadium oxide, a chromium oxide, a molybdenum oxide and a boron oxide supported on a silica carrier. This catalyst is suitable for use in the production of aromatic nitriles from alkyl-substituted aromatic compound by the catalytic reaction of a gas mixture containing an alkyl-substituted aromatic compound, ammonia and oxygen or a gas containing molecular oxygen over a catalyst. The present invention further relates to a process for producing the aromatic nitriles using said catalyst.
Abstract:
Aromatic nitriles, in particular phthalodinitriles, are prepared from an appropriately alkyl-substituted aromatic hydrocarbon by catalytic oxidation with oxygen or an oxygen-containing gas in the presence of ammonia at elevated temperatures in the vapor phase, in the presence of a catalyst which contains from 2 to 10% by weight of vanadium(V) oxide, from 1 to 10% by weight of antimony(III) oxide, from 0.02 to 2% by weight of an alkali metal oxide and alumina, by a process in which from 0.01 to 1.0% by weight of an alkaline earth metal, or of a compound of an alkaline earth metal, in particular barium or a barium compound, is added to the catalyst.
Abstract:
A process for producing polychlorobenzonitrile having chlorine atoms at the 2,6-position by ammoxidation of toluene derivative having chlorine atoms at the 2,6-position with a gas containing ammonia and oxygen in vapor phase in the presence of a catalyst, characterized in that bromine and/or a bromine-containing compound is added to the reaction system.
Abstract:
Vanadia supported on a silica-alumina or gamma-alumina support in an amount to provide a vanadia to support weight ratio ranging from about 0.3:1 to about 3:1 substantially entirely within the pores of the support, the vanadia having been placed in molten form substantially within the pores of a support having a surface area greater than about 50m.sup.2 gram, a porosity greater than about 0.4 cc/gram which further includes an alkali metal, with the vanadium metal to alkali metal mole ratio being from 2:1 to 30:1. At least a portion of the alkali metal is preferably in the form of alkali metal vanadate. The catalyst is used for the production of nitriles from a compound containing at least one alkyl group.
Abstract:
In an ammoxidation process where reactant gases comprised of a lower alkyl-substituted aromatic hydrocarbon, oxygen, and ammonia are passed over an ammoxidation catalyst in a fixed or fluidized bed system, the improvement of reducing combustion of hydrocarbon and ammonia and achieving a more favorable product distribution by distributing a stream containing reactant oxygen throughout the catalyst bed.