Abstract:
This disclosure describes several video watermarking and fingerprinting enhancements. These enhancements include synchronizing watermark detectors with one-dimensional calibration signals, layering digital watermarks, watermarks for version control, compressed domain watermarking, watermarking of video object layers, key channel watermark embedding for video, robust fingerprinting of video and watermarking of scalable video.
Abstract:
Processes and apparatus for improving the state of the art for watermarking and data protection. The disclosure includes feature-based watermarks, auto- and cross-correlation techniques for determining scaling and rotation, transitions in time based watermarking, autocorrelation watermarks for images, and dynamic content scrambling of static files.
Abstract:
The present invention provides steganographic embedding techniques. In particular, the present invention provides a stamper (e.g., a rubber stamp) that includes a steganographic signal (e.g., a digital watermark) embedded in a stamping surface pattern thereof. The digital watermark survives in its host pattern when the stamper stamps the host pattern. The digital watermark can be used to authenticate or identify the stamper. The digital watermark can also be used to link to related information.
Abstract:
The present invention relates to the methods of estimation and recovering of general affine geometrical transformations which were applied to data, extensible to any other defined class of geometrical transformations, according to the preamble of the dependent claims. The parameters of the undergone deformation are robustly estimated based on maxima given by a parametric transform such as Hough transform or Radon transform of some embedded information with periodical or any other known regular structure. The main applications of this invention are robust digital still image/video watermarking, document authentication, and detection of periodical or hidden patterns. In the case of periodical watermarks, the watermark can also be predistorted before embedding based on a key to defeat block-by-block removal attack.
Abstract:
The present invention relates to an identification document for a subject. The identification document includes a substrate, and a visual image formed on the substrate. The visual image includes a face image of the subject in a first area, and invisible but retrievable embedded information formed in the face image in the first area but not formed in a second area of the visual image. The embedded information corresponds to the identity of the subject and is usable to identify the subject.
Abstract:
The present invention relates to toys and game applications that are enhanced with digital watermarks. In one embodiment, a character card includes a unique identifier in the form of a digital watermark. The identifier is used to link to a database record, which can be updated to reflect changes in game attributes. Some such game attributes include life, character type and name, health, strength, and power levels. The data record can be updated or modified to reflect changes in attributes due to activity or events during a computer software game. The database record can be used by the computer software game to alter or enhance the game. In another embodiment, a toy interacts with toy components or cards via digital watermarks. Digital watermarks enhance games, toys and books in still other embodiments.
Abstract:
An object (e.g., a driver's license) is tested for authenticity using imagery captured by a consumer device (e.g., a mobile phone camera). Corresponding data is sent from the consumer device to a remote system, which has secret knowledge about features indicating object authenticity. The phone, or the remote system, discerns the pose of the object relative to the camera from the captured imagery. The remote system tests the received data for the authentication features, and issues an output signal indicating whether the object is authentic. This testing involves modeling the image data that would be captured by the consumer device from an authentic object—based on the object's discerned pose (and optionally based on information about the camera optics), and then comparing this modeled data with the data sent from the consumer device. A great variety of other features and arrangements are also detailed.
Abstract:
The present invention relate generally to signal encoding and decoding. One claim recites a method comprising: obtaining color image data or color video data, the color image data or color video data comprising an encoded signal pattern, the encoded signal pattern aiding detection of an encoded message, the pattern comprising first frequency components and second frequency components, the color image data or color video data comprising first color data and second color data, in which the first color data comprises the first frequency components encoded therein, and the second color data comprises the second frequency components encoded therein; combining the first color data and the second color data, said combining yielding combined color data; utilizing one or more processors or electronic processing circuitry, detecting the encoded signal pattern from the combined color data, said detecting yielding rotation and scale information; and using the rotation and scale information to detect the encoded message from the combined color data. Of course, other combinations and claims are provided too.
Abstract:
A steganographic digital watermark signal is decoded from host imagery without requiring a domain transformation for signal synchronization, thereby speeding and simplifying the decoding operation. In time-limited applications, such as in supermarket point-of-sale scanners that attempt watermark decode operations on dozens of video frames every second, the speed improvement allows a greater percentage of each image frame to be analyzed for watermark data. In battery-powered mobile devices, avoidance of repeated domain transformations extends battery life. A great variety of other features and arrangements, including machine learning aspects, are also detailed.
Abstract:
The present invention relate generally to digital watermarking and data hiding. One claim recites an apparatus comprising: electronic memory for storing first color data and second color data, the first color data and the second color data represent data from a color image signal or color video signal, and a digital watermark signal, the digital watermark signal serving to facilitate detection of a watermark message; means for separating the digital watermark signal into first frequency components and second frequency components; means for modifying the first color data by hiding the first frequency components therein; and means for modifying the second color data by hiding the second frequency components therein. Of course, other combinations and claims are provided too.