摘要:
An electrical parking brake device includes an operation switch and a control circuit. The operation switch includes a switch button, miniature switches, operation switch terminals and inside conductors, the switch button being in one of an On state, an Off state and a neutral state, the miniature switches operating in conjunction with the state of the switch button. The control circuit includes control circuit terminals, a switch verification circuit, management circuitry and brake application command circuitry, the management circuitry managing the electrical parking brake device. The operation switch defines closed circuits that are independent in terms of a pair of the operation switch terminals, for each of the operating states. The closed circuits are closed circuits that, when one or more of the miniature switches fail, avoids influence of the failure, by the miniature switches other than the one or more failing miniature switches.
摘要:
A switch assembly provides a pressing plate on a pivot contact lever to minimize heat generation at the point between the pivot contact lever and the contact point by providing an additional parallel connection contact plate which is in parallel connection to the pivot contact lever. The switch assembly provides convex contact portions on the internal output ports of the forward/reverse switch mechanism. A supplementary elastic metal plate to the pivot contact lever is provided to solve the problem of loose contact at the pivot connection site where the pivot contact lever and the support unit meet, and provides a supplementary contact unit to the movable contact device at the forward/reverse switch mechanism.
摘要:
An anti dumping switch includes a circular and hollow housing, a bottom surface connected to the housing, a first switch end, a second switch end, a bush, and two balls, the housing and the bottom surface cooperatively defining a accommodating space, the first switch end and the second switch end both extending into the accommodating space through the bottom surface and fixed in the bottom surface, the balls being received in the accommodating space. When the anti dumping switch is flat the balls connecting the first switch end and when the anti dumping switch is dumped the balls disengage with the first switch end or the second switch end, wherein the first switch end is disposed at substantially a center of the bottom surface, the second switch end being disposed adjacent to the housing, the bush being received in the accommodating space and cycling the housing from inside and connecting the second switch end, the bush including a slope surface disposed adjacent to the bottom surface that make the balls contact the first switch end or the second switch end.
摘要:
Disclosed is a thermostat comprising: a housing; first and second switching sections installed within the housing; a bimetal installed within the housing to electrically insulate the first and second switching sections at a predetermined temperature; and upper and lower caps covering upper and lower opened ends of the housing. According to the thermostat, the first and second switching sections are controlled to simultaneously block a plurality of input terminals.
摘要:
Nanotube device structures and methods of fabrication. A method of making a nanotube switching element includes forming a first structure having at a first output electrode; forming second structure having a second output electrode; forming a conductive article having at least one nanotube, the article having first and second ends; positioning the conductive article between said first and second structures such that the first structure clamps the first and second ends of the article to the second structure, and such that the first and second output electrodes are opposite each other with the article positioned therebetween; providing at least one signal electrode in electrical communication with the conductive article; and providing at least one control electrode in spaced relation to the conductive article such that the control electrode may control the conductive article to form a conductive pathway between the signal electrode and the first output electrode.
摘要:
A safety mechanism for a power path uses a mechanical structure for disconnecting a power path and providing a safety measure for electric equipments. The safety mechanism includes a casing, two conducting copper plates, a slide base, two rotating blocks, two sets of resilient elements and an insert pin. When the power path is connected, the insert pin must be always situated in a pin hole of the casing and inserted completely for contacting and conducting the corresponding pins of the two conducting copper plates. If it is necessary to disconnect a circuit in an emergency situation, users simply pull out the insert pin to rotate the rotating block accordingly, and allow the rotating block to synchronously drive the slide base to displace, such that the corresponding pins of the two conducting copper plates are forced to separate to form a disconnected circuit status.
摘要:
Nanotube device structures and methods of fabrication. A method of making a nanotube switching element includes forming a first structure having at a first output electrode; forming second structure having a second output electrode; forming a conductive article having at least one nanotube, the article having first and second ends; positioning the conductive article between said first and second structures such that the first structure clamps the first and second ends of the article to the second structure, and such that the first and second output electrodes are opposite each other with the article positioned therebetween; providing at least one signal electrode in electrical communication with the conductive article; and providing at least one control electrode in spaced relation to the conductive article such that the control electrode may control the conductive article to form a conductive pathway between the signal electrode and the first output electrode.
摘要:
Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element. Under another embodiment of the invention, the output node includes an isolation structure disposed in relation to the nanotube channel element so that channel formation is substantially invariant from the state of the output node. Under another embodiment of the invention, the isolation structure includes electrodes disposed on opposite sides of the nanotube channel element and said electrodes produce substantially the same electric field. Under another embodiment of the invention, a Boolean logic circuit includes at least one input terminal and an output terminal, and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. The Boolean function transformation includes a Boolean inversion within the function, such as a NOT or NOR function.
摘要:
Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element. Under another embodiment of the invention, the output node includes an isolation structure disposed in relation to the nanotube channel element so that channel formation is substantially invariant from the state of the output node. Under another embodiment of the invention, the isolation structure includes electrodes disposed on opposite sides of the nanotube channel element and said electrodes produce substantially the same electric field. Under another embodiment of the invention, a Boolean logic circuit includes at least one input terminal and an output terminal, and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. The Boolean function transformation includes a Boolean inversion within the function, such as a NOT or NOR function.