Abstract:
A coating solution and a method of manufacturing a magnesium-oxide layer on a glass substrate. The layer obtained is characterized by a satisfactory adhesion and a high secondary electron emission coefficient. The curing temperature can remain below 250.degree. C., so that the method is suitable for the customary types of glass.Said coating solution comprising a solvent and partially acetylated and partially hydrolyzed Mg(OR).sub.2 of the formula Mg(OH).sub.x (OR).sub.y (OAc).sub.z.
Abstract:
A method is provided for depositing a conducting electrode on the output face of a microchannel plate and into the output end of each channel. The electrode is vapor deposited by a method which ensures that the material impinges on the output face from random angles relative to the axis of each channel. A layer (10) of tapering thickness is formed down each channel. When used in an image intensifier tube, for example, the output beam of electrons from each channel is more collimated and the resolution of the tube is improved.
Abstract:
A microchannel electron multiplier is formed by placing into a glass tube a plurality of bundles optical fibers, each having an etchable glass core and a glass cladding which is non-etchable when subjected to the conditions used for etching the core material. The fiber bundles located around the inside edge of the glass tube are replaced by support fibers having both a core and a cladding of a material which is non-etchable under the above-described conditions. The assembly of the tube, bundles and support fibers is heated to fuse the tube, bundles and support fibers together. The etchable core material is then removed and the assembly sliced into wafers. The inner surface of each of the claddings which bound the channel formed after removal of the core material is rendered electron emissive by reduction of the lead oxide by hydrogen gas. Metal films are deposited onto the opposed surfaces of each of the wafers to form contacts.
Abstract:
A method of manufacturing a photomultiplier tube (10) comprising a tube body (20), a photocathode (30) and an electron multiplier element (40) destined to be placed at a small distance from the photocathode (30). According to the invention the tube (10) is provided with sliding means (50) of the electron multiplier (40) parallel to the axis (22) of the tube body (20), means (50) provided with abutments (53) situated in the proximity of the said window (31). The electron multiplier (40) is also provided with means (60) for the remote soldering of the electron multiplier to the said sliding means (50), and in a first step the electron multiplier (40) is placed at a sufficient distance from the window (31), then in a second step the constituents of the photocathode are evaporated by means of evaporators (70) placed at a distance from the window and, in a third step, the electron multiplier (40) is moved against the said abutments (53), while in a fourth step the electron multiplier (40) is maintained in position in the proximity of the photocathode (30) by remote soldering to the sliding means (50) with the aid of the remote soldering means (60).
Abstract:
A microchannel plate has a platelike photosensitive glass substrate and a plurality of microchannels formed separately from each other and extending across the thickness of the substrate. A secondary electron-emission surface is formed on an inner surface of each of the microchannels. Accelerating electrodes formed on two opposite sides of the photosensitive glass substrate, so as to be partially in electrical contact with the secondary-emission surface. The microchannels are formed by applying ultraviolet rays to the substrate through a mask and removing irradiated portions of the substrate by etching.
Abstract:
A method of forming an emissive coating on a dynode substrate. The method comprises the steps of vapor depositing a composite coating consisting of magnesium and aluminum onto the dynode substrate. A 50 to 500 angstrom thick layer of aluminum is vapor deposited over the composite coating and the aluminum layer is oxidized. The coated dynode is then activated by heating it in an oxygen atmosphere at a pressure of at least 5.times.10.sup.-6 Torr oxygen at a temperature between 270.degree. and 400.degree. C. The resulting secondary emissive coating contains from 1.5 to 90% by weight of magnesium. The coated dynodes are used in channel electron multipliers which are suitable for use in electron display tubes such as image intensifiers or color television display tubes.
Abstract:
Channel plate image intensifiers, for use as raster intensifiers in cathode ray tubes for example, comprise a stack of alternately arranged perforate laminar dynodes M and perforate laminar separators D aligned to form electron multiplier channels P. Each of the separators comprise a perforate aluminium plate having an anodized layer some 15 microns thick on the plate surface. Such separators can be manufactured to have the desired electrical characteristics and uniform thickness over their entire area so that the dynodes M are parallel to each other and provide a uniform gain over their entire area.The invention also relates to a method of anodizing perforate and imperforate aluminium foils.
Abstract:
An unetched microchannel plate is coated on one side with an etchant-resint mask having a pattern of open areas. The core fibers in the open areas are then etched out to form a pattern of microchannels. The microchannels and the mask are metallized, after which the mask and its metal are stripped. When the other side of the plate is metallized in the usual manner, a microchannel intensifier plate with a pattern of microchannels results.
Abstract:
A composite glass article for channel plate fabrication comprising a glass matrix in which is encased an array of leachable glass core elements, the core elements being composed of a BaO-B.sub.2 O.sub.3 -SiO.sub.2 glass exhibiting improved leaching characteristics as well as thermal expansion and high temperature softening properties compatible with the glass matrix, is described.
Abstract:
Disclosed are polymeric compositions for manufacture of secondary electron multiplier tubes. The polymeric compositions may be provided by combinations of (1) insulating polymers having a high secondary yield, (2) conductive particles such as carbon black, graphite or metal particles which may be granularly dispersed into the insulating polymers and (3) organic semiconductors soluble in and compatible with the insulating polymers and adapted to be molecularly dispersed therein. The organic semiconductors may be organic semiconducting polymers wherein the polymers themselves are conductive.