Abstract:
A long photomultiplier comprises a cylindrical main body having a light receiving face which extends in the longitudinal direction of the main body, a photocathode provided inside of the main body so that the photocathode extends along the light receiving face and emanates photoelectrons when exposed to light, and dynodes provided inside of the main body for multiplying the emanated photoelectrons. A reflection plate is provided facing and extending along the light receiving face, and the photocathode is positioned between the light receiving face and the reflection plate. The reflection plate is positioned for reflecting light, which has passed through the photocathode, toward the photocathode.
Abstract:
A photomultiplier used in liquid scintillation counting has an envelope, a base, an anode, a curved dynode structure and a photocathode. A specimen is inserted in a measuring area of the envelope for liquid scintillation counting. The photocathode has a concave surface, so that the specimen is encircled by the photocathode as completely as possible. The photocathode is positioned at a concave window of the envelope, so that a maximum number of photons directly impinge on the photocathode.
Abstract:
A so-called "solar-blind" photomultiplier tube includes an envelope having a sidewall and an input faceplate formed from an ultraviolet transmitting filter. A photoemissive cathode is disposed within the envelope for providing photoelectrons in response to radiation incident thereon. The cathode has an intrinsic responsivity extending from the near-ultraviolet portion through the visible portion of the electromagnetic spectrum; however, the filter faceplate transmits only the ultraviolet portion of the spectrum to the photoemissive cathode. The combination of the filter faceplate and the photoemissive cathode therefore limits the tube to a responsivity within the wavelength range of about 300 to less than 400 nanometers.
Abstract:
In a photoelectric conversion device, the potential control unit controls electric potentials applied to the meta-surface. The meta-surface includes a plurality of patterns which are space away from each other. The plurality of patterns include an antenna portion and at least one bias portion. The antenna portion extends in a predetermined direction and emits the electron in response to incidence of the electromagnetic wave. The potential control unit switches a first state and a second state by controlling the electric potentials applied to the plurality of patterns. In the first state, a component of an electric field from the bias portion toward the antenna portion in a predetermined direction is positive. In the second state, a component of an electric field from the bias portion toward the antenna portion in the predetermined direction is negative.