Abstract:
A removable tool includes a toe, a clevis, and a handle. The toe is configured to be insertable into and removable from an enclosure notch of a card guided computer enclosure. The clevis is configured to be insertable into and removable from a card hook of a circuit card assembly. The handle is for receiving force for inserting or extracting an array of circuit card assembly contacts into or out of an array of motherboard contacts, respectively.
Abstract:
A power device suited for being assembled in a chassis and connected with a plug is provided. The power device includes a housing, and a receptacle, a spring clamp, a position limiting element disposed on the housing. The plug is removably connected to the receptacle. The spring clamp has a moving end. The position limiting element is located between the spring clamp and the receptacle. The position limiting element and the moving end of the spring clamp are linked together to move between a first position and a second position relative to the housing. When the plug connects to the receptacle, the position limiting element is interfered with the plug and the spring clamp simultaneously so that the spring clamp is constrained at the first position.
Abstract:
A rack system includes one or more racks each configured to receive at least one distribution module. Each rack includes management sections located at the front of the rack; troughs located at the rear of the rack; horizontal channels extending between the management sections and the trough; a storage area located at a first of opposing sides of the rack; a front vertical channel that connects to the storage area and at least some of the management sections; and a travel channel at the rear of the first rack that connects the storage area to the troughs.
Abstract:
A disk drive carrier includes a frame and a shuttle. The frame includes supports configured to be in physical communication with a disk drive, a first index tab to align the disk drive with a connector on a backplane of a server tray, and an arm configured to engage the disk drive with the connector in a horizontal orientation. The shuttle includes a base including a channel, edges extending from the base and forming an enclosure to receive the frame and the disk drive in a vertical orientation, a fastener connected to the server tray through the channel, and an alignment key configured to slide along the first index tab and to align the disk drive with the connector. The disk drive shuttle is configured to horizontally move along the server tray and to enable the disk drive to connect with the connector in the horizontal orientation.
Abstract:
A modular skid frame and device to reduce the potential for harm and injury from arc flashes. The modular skid frame comprises a plurality of frame members secured together to form the skid frame, and one or more hook members formed on one or more of the frame members to permit the receipt of a bucket or blade from a loader, scoop tram or other construction or mining equipment into the bowl portion and behind the bill portion of the hook member to facilitate the lifting and moving of the skid frame. Also disclosed is a device for racking a circuit breaker into and out of a circuit breaker cradle. The device comprises an actuator operatively connected to the circuit breaker cradle to permit the circuit breaker to be racked into and out of the cradle without direct or indirect contact on the part of an operator.
Abstract:
Methods and apparatus for forming a housing, such as for an electronic device, from multi-layer materials are disclosed. The multi-layer materials include at least two layers. Typically, one or more of the layers are metal. However, different layers of the multi-layer materials can be different metals. In one embodiment, an inner layer of the multi-layer materials can be provided with or form internal features that can be for attaching parts or components to the multi-layer materials. In another embodiment, processing of an inner layer of the multi-layer materials can facilitate part formation with increased curvature and/or internal part clearance. In another embodiment, the multi-layer materials can include an intermediate layer that facilitates creation of internal features that can be for attaching parts or components to the multi-layer materials. In still another embodiment, the multi-layer materials can provide a protective layer that serves to protect an outer surface of the housing during manufacturing and/or assembly.
Abstract:
A fiber panel system includes a chassis and at least blades configured to mount to the chassis. Each blade is moveable relative to the chassis between a retracted (closed) position and at least one extended position. Cable slack is managed at the front and/or rear of each chassis to facilitate movement of the blades without pulling or bending the cables beyond a maximum bend limit. Each blade may be locked into one or more positions relative to the chassis.
Abstract:
Methods and apparatus for forming a housing, such as for an electronic device, from multi-layer materials are disclosed. The multi-layer materials include at least two layers. Typically, one or more of the layers are metal. However, different layers of the multi-layer materials can be different metals. In one embodiment, an inner layer of the multi-layer materials can be provided with or form internal features that can be for attaching parts or components to the multi-layer materials. In another embodiment, processing of an inner layer of the multi-layer materials can facilitate part formation with increased curvature and/or internal part clearance. In another embodiment, the multi-layer materials can include an intermediate layer that facilitates creation of internal features that can be for attaching parts or components to the multi-layer materials. In still another embodiment, the multi-layer materials can provide a protective layer that serves to protect an outer surface of the housing during manufacturing and/or assembly.
Abstract:
An electronic apparatus, which includes an electromagnetic shield case supported on a circuit board, and a conductive component electrically connected to the electromagnetic shield case, for intimately contacting and sealing a gap of the electromagnetic shield case, is provided. Therefore electromagnetic shielding of the electronic apparatus is achieved using the conductive component that is used as the structural reinforcement component and also used for the purpose of shielding the gap of the electromagnetic shield case.
Abstract:
A system is configured for installing a replaceable component at a replaceable component locus in an equipment cabinet having a front and back plane and a plurality of sides. A fixed component occupies a first volume that establishes a replaceable component volume between the first volume and the back plane. The system includes: (a) a substrate supporting the replaceable component that presents substantially parallel first and second edges in a substrate plane; and (b) a guide structure fixed with the cabinet that cooperates with the substrate to slidingly move the substrate along a replacement route between the front plane and a replacement locus in the replaceable component volume in alternate first and second installation movements. The first installation movement is responsive to a first installation force applied to the substrate in the substrate plane. The second installation movement is responsive to a second installation force applied generally perpendicular with the substrate plane.