Abstract:
A method of processing a vehicle wheel/rim preform with a centersection/spider and an annular wall extending around a first rotational axis and having an annular surface defining axially spaced, annular inboard and outboard bead seats. The method includes the steps of: providing a workpiece support having a chuck assembly that is rotatable around a second axis and at least one rim wall support assembly; engaging the chuck assembly with the centersection/spider to maintain the vehicle wheel/rim preform in a processing position; engaging the at least one rim wall support assembly with the annular wall to exert thereon a force with a radial component to thereby stabilize the wheel/rim preform; and processing the vehicle wheel/rim preform at the annular surface fully axially between the inboard and outboard bead seats.
Abstract:
A method of forming a wheel disc starts with a flat blank. A plurality of windows are formed in the wheel disc, wherein each window has a respective outer edge proximate with a continuous outer band around a periphery of the wheel disc. The windows define a plurality of spokes between adjacent windows, and the angular size of each of the windows along the outer band is preferably greater than the angular size of each of the spokes. The outer band is partially closed toward a cylindrical shape by engaging a cam die against at least a portion of the outer band. The outer band is substantially fully closed into a cylindrical shape by axially wiping the outer band using a cylindrical die. The intermediate camming operation achieves the desired final shape after wiping without introducing stresses that would weaken or distort the wheel disc.
Abstract:
A method for molding a wheel rim hump part, comprising the steps of stopping a fist claw (30) and a second claw (32) holding a work (wheel rim for vehicle) (W) at specified positions and alowing an annular support member (160) to abut on the end surface of the curl part (C1) of the work (W), closing a right side first mold (16b) to support the curl part (C1) and the outer peripheral wall surface of the work by the support mold (106) of the right side first mold (16b), also closing a left side first mold (16a) to support the curl part (C1) and the outer peripheral wall surface of the work by the support mold (106) of the left side first mold (16a), moving forward a long rod (136) to allow a roller metal mold (124) to abut on the inner peripheral wall surface of the work (W), and turning the roller metal mold (124) along the circumferential direction thereof.
Abstract:
A method of manufacturing a full face vehicle wheel having a high durability performance, in which the back surface of a wheel disk is provided in advance with an annular joining groove. A peripheral joining end of a wheel rim is provided in advance with an inside slope end surface. The peripheral joining end is seated and positioned on the bottom surface of the annular joining groove. A welding heat confining annular region is produced between the inside groove wall of the annular joining groove and the inside slope end surface. The annular joining groove and the peripheral joining end are joined by welding.
Abstract:
The present invention provides wheel manufacturing method comprising a pressing step in which a primary molded product having a cylindrical shape with a bottom in which a flange part that extends to the outside is disposed on the open side end part is manufactured, a working step in which a secondary molded product is obtained by cutting away the bottom part of the abovementioned primary molded product, and a spinning step in which, the secondary worked product is fit over and fastened to a rotating jig, a rim flange molding roller is pressed against the end part of the flange part while the secondary worked product is rotated together with the rotating jig, so that the flange part is gradually molded into the shape of a rim flange part, and the flange part is subsequently subjected to an angular adjustment to an appropriate angle to mold a rim flange part.
Abstract:
Methods for forming a soft lip for a wheel rim are disclosed herein. The wheel rim may be a cold-formed, spun-formed, or rolled-formed cylindrical blank, wherein the blank includes an upturned outer edge. As the blank is spun, a blunting roller lowered to contact the upturned outer edge to blunt the outer edge into a work-strengthened annular bead, and finish off the external surface of the annular bead to form a soft lip.
Abstract:
This invention relates to an improved fabricated vehicle wheel and method for producing the same. The method for producing the fabricated vehicle wheel comprises the steps of: (a) providing a wheel rim defining a rim axis and including an inboard tire bead seat retaining flange, an inboard tire bead seat, a generally axially extending well portion, an outboard tire bead seat and an outboard tire bead seat retaining flange; (b) providing a wheel disc blank; (c) subjecting the wheel disc blank to a metal forming operation to produce a partially formed wheel disc having a plurality of outwardly extending spoke portions which are spaced circumferentially about the disc blank; (d) subjecting the partially formed wheel disc to a metal forming operation to produce a wheel disc preform, the wheel disc preform including an inner mounting portion, a plurality of outer spoke portions, and an intermediate spoke portion defined in the region between the inner mounting portion and outer spoke portions, the intermediate spoke portion including a plurality of generally globe shaped spoke portions; (e) subjecting the wheel disc preform to one or more metal forming operations to produce a finished wheel disc, the finished wheel disc including a centrally located wheel mounting surface and a plurality of outwardly extending spokes; and (f) securing the wheel disc and the wheel rim together to produce the fabricated vehicle wheel.
Abstract:
This invention relates to a method for producing a full face vehicle wheel and comprises the steps of: (a) providing a rim including an inboard tire bead seat retaining flange, an inboard tire bead seat, a well portion, an outboard tire bead seat, the inboard tire bead seat retaining flange including an outer surface, the inboard tire bead seat including an outer surface, an the outboard tire bead seat including an outer surface; (b) providing a disc including a generally centrally located inner wheel mounting portion and an outer annular portion, the outer annular portion including an inner surface and an outer surface, the inner wheel mounting portion including at least one of a fully formed center pilot hole and a plurality of fully formed lug bolt mounting holes, the center pilot hole defining a pilot hole axis and each of the lug bolt holes defining a lug bolt hole axis; (c) providing a wheel fixture tooling assembly for supporting the rim and the disc relative to one another, the wheel fixture tooling assembly operative to locate the rim on the outer surfaces of the inboard and outboard tire bead seats whereby the inboard and outboard tire bead seats are located relative to the axis of the center pilot hole and the axis of the lug bolt holes; and (d) subsequent to step (c), securing the wheel disc to the wheel rim by a weld.
Abstract:
This invention relates to an improved method for producing aluminum MMC rotors. The method comprises the steps of initially casting an aluminum MMC rotor casting having a central pilot aperture, cold forming the friction section, cold forming the mounting section, punching the central pilot aperture to remove excess aluminum MMC material, and then forming fastener apertures in the mounting section. In the step of cold forming the friction section a plurality of cylindrical rollers are pressed against each side of the friction section and the rollers are moved in a circumferential direction around the friction section to finish the friction section to the desired dimensions. In the step of cold forming the mounting section a plurality of cylindrical rollers are pressed against each side of the mounting section and the rollers are moved in a circumferential direction around the mounting section to finish the mounting section to the desired dimensions. The excess aluminum MMC material is removed at the radially inner edge of the mounting section by punching the central pilot aperture. Finally, fastener apertures are formed in the mounting section.
Abstract:
A vehicle wheel with a roll-formed rim has an interior rim section and axially spaced first and second beadseat sections. A disc is attached at its skirt flange to the first beadseat section. The first beadseat section has radially outward and radially inward surfaces, both angled radially outward from the wheel axis for example at a fifteen degree angle. A roll-formed groove is formed in the radially inward surface of the first beadseat section, the groove having an inwardly facing cylindrical first surface. The skirt flange has an outwardly facing cylindrical first surface, which engages and is press-fit with the groove cylindrical first surface. The skirt flange and rim are then welded. The groove has a second frusto-conical surface adjacent the groove cylindrical surface. The skirt flange may have a second frusto-conical surface to mate with the groove second frusto-conical surface. The skirt flange may have a third frusto-conical surface to mate with the radially inward surface of the first beadseat section.