Abstract:
A compact fluorescent lamp comprises a fluorescent tube having a helical portion on at least a part thereof and turned down in the middle, a pair of tube ends thereof each provided with a discharge electrode, the pair of tube ends juxtaposing with each other in the same direction, a holder for holding the tube ends so as that the fluorescent tube is supported at the one side thereof, a lighting device for supplying a high-frequency power to the fluorescent tube, the lighting device comprising a circuit board facing the other side of the holder and circuit elements mounted on the circuit board, a cover for accommodating the lighting device the cover opening at both ends and holding the holder at the one opening end, and a cap fixed to the other opening end of the cover for supplying a commercial power to the lighting device by being mounted to a socket of luminaire, wherein a thin tube is protruded from at least one of the tube ends of the fluorescent tube in the cover, and the thin tube is communicated with the fluorescent tube.
Abstract:
An electrodeless fluorescent lamp (10) having a burner (20), a ballast housing (30) containing a ballast (40) and a screw base (50) for connection to a power supply. A reentrant cavity (60) is formed in the burner (20) and an amalgam receptacle (70) containing amalgam (75) is formed as a part of the reentrant portion and in communication with the burner (20). A housing cap (80), formed of a suitable plastic, connects the burner (20) to the ballast housing (30) and a suitable adhesive (31) fixes the burner to the housing cap (80). An EMI cup (90) is formed as an insert to fit into the ballast housing (30), which also is formed of a suitable plastic, and has a bottom portion (100) and an EMI cap (110) with an aperture (120) therein closing an upper portion (140). The EMI cup (90) and the EMI cap (110) are preferably formed from 0.5 mm brass. The amalgam receptacle (70) extends through the aperture (120) and into the cup (90). For a fixed amalgam position, changing the aperture size allows adjustment of the amalgam tip temperature, and thus, allows control of the system lumen output, efficacy, CCT and CRI, all of which are dependent on the amalgam temperature.
Abstract:
Electrons are arranged so they circulate along a spiral path in a vacuum. The path has a hollow symmetrical shape which is defined by a surface of a toroid. The shape is controllable by a magnetic field and the electrons can be contained within the shape. A containing force can be created by external electromagnetic fields, ions within the vacuum, or by interactions between the orbiting electrons themselves. The contained electrons store energy for later retrieval.
Abstract:
This invention relates to Lithium Plasma discharge sources, and in particular to methods of making and producing pulsed and continuous discharge sources for plasma soft-x-ray or EUV projection lithography. Specifically, novel configurations, metal and ceramic material combinations and efficient wavelengths over and including 11.4 nm are disclosed for EUV lithium plasma discharge lamps.
Abstract:
A luminosity control system (10) for a fluorescent lamp (12) that has a glass enclosure (18) and a pair of lead wires (14) at each end of the glass enclosure is provided. A filament (16) is electrically coupled to each pair of lead wires. An amalgam (22) is located adjacent each filament. The amalgam releases mercury into the glass enclosure upon activation of the fluorescent lamp. A wrapped wire heater (24) is in thermal contact with a first portion of the exterior surface of the glass enclosure. The heater and a thermoelectric cooler (36) raise the temperature of the fluorescent lamp to a level above the temperature at which the fluorescent lamp produces maximum visible light as determined by mercury pressure within the glass enclosure while the amalgam releases mercury into the fluorescent lamp. Thereafter, the thermoelectric cooler (36) maintains a portion of the glass enclosure at this temperature.
Abstract:
A mercury-dispensing device is disclosed that includes a mercury dispenser having the formula Ti.sub.x Zr.sub.y Hg.sub.z in which x and y are between 0 and 13, inclusive, the quantity x+y is between 3 and 13, inclusive, and z is 1 or 2; and a promoter that comprises copper, silicon and possibly a third metal selected among the transition elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispenser, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.
Abstract:
An electrodeless fluorescent lamp comprises a discharge vessel (10) having a re-entrant portion (11) for housing a solenoid (12) for initiating a discharge in the vessel by means of an RF electromagnetic field. A primary amalgam (18) for releasing mercury vapor is placed at the tip of an exhaust tube (17) where the primary amalgam can be maintained at a suitable temperature for controlling the mercury vapor pressure. The primary amalgam does not provide rapid run-up of light output. To provide rapid run-up of light output a pied of indium (20,30) is placed on the re-entrant at a position where it is rapidly heated by the discharge. The indium may be coated with the layers of a coating including phosphor.
Abstract:
Apparatus for providing radiation includes an envelope and a cathode arrangement disposed within the envelope. The cathode arrangement includes an element for establishing an electrical contact. A dispenser is also disposed within the envelope. The dispenser carries mercury or a mercury alloy. A support element supports the dispenser. The support element extends from the dispenser through the envelope to provide an independent electrical contact for the dispenser.
Abstract:
A low-pressure mercury vapor discharge lamp according to the invention is provided with a discharge vessel (10) which encloses a discharge space (11) containing mercury and a rare gas in a gaslight manner. The discharge vessel (10) has a light-transmitting tubular portion (12) and a first and a second end portion (13A, 13B). Current supply conductors (20A, 20A'; 20B, 20B') issue through each end portion (13A, 13B) to respective electrodes (21A, 21B) arranged in the discharge space (11). The lamp is further provided with a main amalgam (30) for stabilizing the mercury vapour pressure in the discharge space (11) during normal operation, and with an auxiliary amalgam (31A, 31B) for quickly releasing mercury into the discharge space (11) after switching-on of the lamp. In an equilibrium state at room temperature (25.degree. C.), the mass (m.sub.Hg in mg) of the quantity of mercury absorbed in auxiliary amalgam (31A, 31B) is at most 20 times the mercury vapour pressure (P.sub.E in Pa) prevalent in the discharge space (11) in the equilibrium state. Only comparatively small brightness differences between lamp zones occur in the lamp according to the invention after switching-on.