Abstract:
An apparatus for transmitting data at high data rates, between two systems that move relative to one another is provided. The apparatus includes an optical fiber and an axial module on one of the two systems for the purpose of axial data coupling, using the optical fiber and a lateral module on another of the two systems for the purpose of lateral data coupling using the optical fiber.
Abstract:
A personnel monitoring system. The personnel monitoring system includes a host node having an optical source for generating optical signals, and an optical receiver. The personnel monitoring system also includes a plurality of fiber optic sensors for converting at least one of vibrational and acoustical energy to optical intensity information, each of the fiber optic sensors having: (1) at least one length of optical fiber configured to sense at least one of vibrational and acoustical energy; (2) a reflector at an end of the at least one length of optical fiber; and (3) a field node for receiving optical signals from the host node, the field node transmitting optical signals along the at least one length of optical fiber, receiving optical signals back from the at least one length of optical fiber, and transmitting optical signals to the optical receiver of the host node.
Abstract:
A method and apparatus for sectorizing coverage of a cellular communications area includes providing a remote unit having microcell antenna units. Each microcell antenna unit is configured to cover a particular sector. The remote unit is connected to a sectorized base station unit which is connected to a mobile telecommunications switching office. Separate digitized streams representative of telephone signals received from the mobile telecommunications switching office are generated corresponding to the microcell antenna units and the separate digitized streams are multiplexed and transmitted to the remote unit. The remote unit demultiplexes the multiplexed digitized streams into the separate digitized streams corresponding to the microcell antenna units and the separate digitized streams are converted to RF signals for coverage of a particular sector by the corresponding microcell antenna unit. Separate digitized streams are separately generated for each microcell antenna unit representative of RF signals received at the microcell antenna unit for a particular sector. The separately generated digitized streams are multiplexed at the remote unit and transmitted to the sectorized base station unit. At the sectorized base station unit, the multiplexed digitized streams are demultiplexed into the separate digitized streams corresponding to microcell antenna units and the separate digitized streams are converted to RF signals for provision to the mobile telecommunications switching office. Diversity at the remote units is also provided.
Abstract:
A polarization multiplexed optical transmitter includes first and second modulation units, combiner, phase controller, and signal controller. The first and second modulation units generate first and second modulated optical signals, respectively. The first and second modulation units include first and second phase shifter to give phase difference between optical paths of corresponding Mach-Zehnder interferometer, respectively. The combiner generates polarization multiplexed optical signal from the first and second modulated optical signals. The phase controller controls the phase difference by the first phase shifter to a target value and the phase difference by the second phase shifter to a value shifted by π from the target value. The signal controller controls operation state of at least one of the first and second modulation units based on optical intensity waveform of the polarization multiplexed optical signal.
Abstract:
In a multi-chip module (MCM), integrated circuits are coupled by optical waveguides. These integrated circuits receive optical signals from a set of light sources which have fixed carrier wavelengths. Moreover, a given integrated circuit includes: a transmitter that modulates at least one of the optical signals when transmitting information to at least another of the integrated circuits; and a receiver that receives at least one modulated optical signal having one of the carrier wavelengths when receiving information from at least the other of the integrated circuits. Furthermore, the MCM includes switchable drop filters optically coupled to the optical waveguides and associated integrated circuits, wherein the switchable drop filters pass adjustable bands of wavelengths to receivers in the integrated circuits. Additionally, control logic in the MCM provides a control signal to the switchable drop filters to specify the adjustable bands of wavelengths.
Abstract:
An optical coupler, the optical coupler being usable with a first optical fibre and a second optical fibre. The second optical fibre defines a second fibre coupling section and a second fibre transmitting section extending from the second fibre coupling section. The second fibre coupling section defines a radially outwardmost peripheral surface, the radially outwardmost peripheral surface defining a peripheral surface coupling portion. The optical coupler includes a coupler first end section and a substantially opposed coupler second end section, the coupler first end section defining a first coupling surface. The optical coupler defines a second coupling surface extending along the coupler first and second end sections. The first coupling surface is optically couplable with the first optical fibre and the second coupling surface is positionable so as to extend substantially parallel to the peripheral surface coupling portion and to be optically coupled with the peripheral surface coupling portion. The optical coupler has optical and geometrical properties such that substantially all the light guided to the first coupling surface by the first optical fibre is directed towards the second coupling surface and into the second optical fibre through the peripheral surface coupling portion so as to be guided into the second fibre coupling section for transmission into the second fibre transmitting portion.
Abstract:
A method is provided for dispersion compensation of an optical signal communicated in an optical network. The method may include receiving an optical signal comprising a plurality of channels. The method may further include filtering at least one channel from the plurality of channels. The method may also include analyzing the at least one channel of the plurality of channels to measure optical dispersion in the at least one channel. The method may additionally include compensating for optical dispersion based on the measured dispersion.
Abstract:
An optical data transmission apparatus is provided, in which a first communication unit 101 and a second communication unit 102 arranged to freely move relatively to each other each include an optical signal transmission unit having a laser diode 120 for emitting single-mode light, a multi-mode optical fiber 111 for guiding a single-mode optical signal output from the laser diode 120 , converting the single-mode optical signal into a multi-mode optical signal, and outputting the multi-mode optical signal, an optical lens 112 for forming the optical signal output from the multi-mode optical fiber 111 into parallel light, and a first polarization element for passing the optical signal polarized in a predetermined direction out of optical signals output from the optical lens 112.
Abstract:
Radio frequency identification (RFID)-equipped communication components are disclosed. The communication components can include fiber optic components, such as fiber optic connectors and fiber optic adapters as examples. An RFID-equipped circuit is provided in the communication components to communicate information. In order that the electrical circuit be provided in the communication component without altering the communication component connection type, the circuit may be disposed in at least one recessed area of the communication component housing. In this manner, the communication component maintains its connection type such that it is compatible with a complementary communication component connection type for backwards compatibility while also being RFID-equipped. The circuit may also be provided in a substrate containing one or more electrical contacts coupled to the circuit such that a wired coupling is established with one or more electrical contacts provided in another communication component when connected.
Abstract:
A system is provided that includes optical amplifiers provided upstream from an optical add-drop multiplexer (OADM). One of the optical amplifiers may be a Raman amplifier that supplies amplified light to another optical amplifier, such as an erbium doped fiber amplifier (EDFA), which, in turn, further amplifies and feeds the light to an input of the OADM. During turn-up, for example, the EDFA may initially be disabled, the power of the pump lasers of the Raman amplifier may be gradually increased until light input to the EDFA exceeds a power threshold at which the EDFA can amplify the input light. Light supplied to the EDFA does not have an excessive amount of power. Accordingly, at this point, the gain of the EDFA may be appropriately adjusted and then activated to supply optical signals to the OADM. Such optical signals may have a low power but not too low so as to prevent proper operation of downstream EDFA. Moreover, these optical signal do not have power that is so high as to cause “spiking.” As a result, cross-talk with optical signals added by the OADM is minimized, and such added optical signals may be sufficiently amplified by optical amplifiers downstream from the OADM.