摘要:
A method for casting an aluminum alloy includes: pouring molten metal of an aluminum alloy comprising 6.0 to 9.0 mass % of Si, 0.4 to 0.8 mass % of Mg, 0.25 to 1.0 mass % of Cu, 0.08 to 0.25 mass % of Fe, 0.6 mass % or less of Mn, 0.2 mass % or less of Ti, and 0.01 mass % or less of Sr, with the balance being Al and unavoidable impurities into a shot sleeve of a die casting machine; filling a mold cavity of a center-gate die with the molten metal at a gate speed of 1 msec or less so as to produce a laminar flow, and subjecting T5 heat treatment so as to obtain the aluminum alloy having a tensile strength of 240 MPa or more.
摘要:
A high-strength aluminum alloy exhibiting excellent stress corrosion cracking resistance and excellent extrudability, and a method for producing an extruded shape using the same are disclosed. The aluminum alloy includes 1.6 to 2.6 mass % of Mg, 6.0 to 7.0 mass % of Zn, 0.5 mass % or less of Cu, and 0.01 to 0.05 mass % of Ti, with the balance being Al and unavoidable impurities.
摘要:
An apparatus and a method are disclosed that form an anodic oxide coating on part of the outer surface of a profile having an irregular cross-sectional shape. A partial anodizing apparatus that is used to partially anodize a profile having an irregular cross-sectional shape includes an electrolytic bath that is divided into two or more partial baths. The profile is held using the two or more partial baths so that part of the profile is situated outside the electrolytic bath to form a sealed electrolysis chamber.
摘要:
A pair of lateral side frames that are fixed along vehicle side members extending in a front-back direction of the vehicle on both sides of the vehicle in a width direction, a front frame that is fixed between front end parts of the lateral side frames, a rear frame that is fixed between rear end parts, and a base frame that is fixed between the front frame and the rear frame are provided. A front mounting frame for fixedly mounting the front side of a battery module on the front side of the base frame, and a rear mounting frame for mounting the rear side of the battery module on the rear side are provided respectively in the width direction of the vehicle.
摘要:
A method includes: preparing a molten aluminum alloy consisting of 0.3-0.8 mass % Mg, 0.5-1.2 mass % Si, 0.3 mass % or more excess Si relative to the Mg2Si stoichiometric composition, 0.05-0.4 mass % Cu, 0.2-0.4 mass % Mn, 0.1-0.3 mass % Cr, 0.2 mass % or less Fe, 0.2 mass % or less Zr, and 0.005-0.1 mass % Ti, with the balance being aluminum and unavoidable impurities; casting the alloy into a billet at a speed of 80 mm/min or more and a cooling rate of 15° C./sec or more; extruding the billet into an extruded product; water cooling the product immediately after extrusion at 500° C./min or more; and artificially aging the product, thereby yielding an extruded product with fatigue strength of 140 MPa or more, fatigue ratio of 0.45 or more, an interval between striations on a fatigue fracture surface of 5.0 μm or less, and a maximum length of Al—Fe—Si crystallized products of 10 μm or less.
摘要:
An aluminum alloy extruded product includes an aluminum alloy including 6.0 to 7.2 mass % of Zn, 1.0 to 1.6 mass % of Mg, 0.1 to 0.4 mass % of Cu, at least one component selected from the group consisting of Mn, Cr, and Zr in a respective amount of 0.25 mass % or less and a total amount of 0.15 to 0.25 mass %, 0.20 mass % or less of Fe, and 0.10 mass % or less of Si, with the balance substantially being aluminum, the aluminum alloy extruded product having a hollow cross-sectional shape, a recrystallization rate of 20% or less of a cross-sectional area of the extruded product, and a 0.2% proof stress of 370 to 450 MPa.
摘要:
A ramp apparatus for a vehicle includes a ramp retractable in the vehicle and drawable to an outside of the vehicle, a moving body movable in a drawing direction and a retracting direction together with the ramp, a support arm rotatably coupled with the ramp at a first rotatable coupling point and rotatably coupled with the moving body at a second rotatable coupling point, and a tension spring interposed between the ramp and the moving body. The ramp is arranged in a lifted-up position in which the ramp faces a door opening of the vehicle from a drawn position. The tension spring rotationally urges the first rotatable coupling point positioning above the tension spring in the drawn position of the ramp about the second rotatable coupling point and exerts an urging force on the ramp, the urging force moving the ramp from the drawn position toward the lifted-up position.
摘要:
An aluminum alloy suitable for obtaining a die-cast aluminum product having high strength and high toughness, comprises, by mass, Si: 7.0 to 9.0%, Mg: 0.4 to 0.6%, Cu: 0.4 to 0.7%, Cr: 0.5% or less, Mn: 0.5% or less, [Cr+Mn]: 0.1 to 0.8%, Fe: 0.10 to 0.25%, and Sr: 0.005 to 0.02%, the balance being Al and impurities.
摘要:
A method for manufacturing a bent article using an aluminum alloy with high strength and excellent corrosion resistance comprises: extruding a cast billet of an aluminum alloy including, by mass, 6.0 to 8.0% Zn, 1.50 to 3.50% Mg, 0.20 to 1.50% Cu, 0.10 to 0.25% Zr, 0.005 to 0.05% Ti, 0.3% or less Mn, 0.25% or less Sr, and the balance Al with inevitable impurities to obtain an extruded material; cooling the extruded material at an average rate of 500° C./min or less immediately after the extrusion processing; subjecting the cooled extruded material to preliminary heating treatment at a temperature within a range of 140 to 260° C. for 30 to 120 seconds within a predetermined time after the extrusion processing; bending the extruded material having undergone the preliminary heating treatment to obtain a bent article; and subjecting the bent article to artificial aging treatment.
摘要:
A high-strength aluminum alloy exhibiting excellent stress corrosion cracking resistance and excellent extrudability, and a method for producing an extruded shape using the same are disclosed. The aluminum alloy includes 1.6 to 2.6 mass % of Mg, 6.0 to 7.0 mass % of Zn, 0.5 mass % or less of Cu, and 0.01 to 0.05 mass % of Ti, with the balance being Al and unavoidable impurities.