摘要:
A surface mount energy storage device in the form of a supercapacitor (1) includes a generally rectangular folded prismatic housing (2) and two energy storage elements (not shown) that are sealingly contained within the housing (2) and which are connected in series. A mount, in the form of an integrally formed tinned metal frame (3), extends about and captively retains housing (2) in the folded configuration shown. Two terminals, in the form of elongate contacts (4, 5) extend from the energy storage elements and terminate outside housing (2) for allowing external electrical connection to the elements.
摘要:
An automotive engine (3) has a start-up state that occurs during a starting sequence and a nm state when operating normally. A starter unit, in the form of a motor (7), cranks the drive unit during the start-up state, and a first energy storage device, in the form of a supercapacitive device (8), supplies electrical energy to the motor (7) during the start-up state. A second energy storage device, in the form of a battery (5), supplies electrical energy selectively to the device (8) other than during the start-up state, and an electrical supply unit, in the form of an alternator (6), selectively supplies electrical energy during the run state to the device (8).
摘要:
A supercapacitor capable of withstanding SMT manufacturing conditions includes at least one pair of electrodes having a mixture of carbon particles preferably in a CMC binder on facing surfaces of the at least one pair of electrodes; a porous separator, preferably polyimide, positioned between the facing surfaces of the at least one pair of electrodes; and an electrolyte for wetting the separator wherein the electrolyte includes an ionic liquid, such as EMITSFI, and optionally a solvent such as PC, GBL or glutaronitrile.
摘要:
An electrolyte system suitable for use in an energy storage device (such as a supercapacitor), and energy devices which comprising the electrolyte system which is made up of an ionic liquid, such as Li or EMI TFSI and a stabilising amount of a stabilising additive. The stabilising additive preferably contains nitrile and or aromatic (benzene) groups, and may be advantageously benzonitrile, cinnamonitrile or succinonitrile. The stabilising additive stabilises the energy storage device against ESR rise and/or capacitance loss but does not adversely affect other performance characteristics of the ionic liquid.
摘要:
Electrolyte for use in an energy storage device such as a capacitor or supercapacitor which comprises a solvent (preferably propionitrile) and an ionic species (preferably methyltriethylammonium tetrafluoroborate). The electrolytes provide a low ESR rise rate, a high voltage and permit operation over a wide range of temperatures, which makes them beneficial for use in a range of energy storage devices such as digital wireless devices, wireless LAN devices, mobile telephones, computers, electrical or hybrid electrical vehicles.
摘要:
A power supply (1) for powering a load, the load being in the form of a flash driver circuit (4) for a digital camera (not shown). The power supply includes a supercapacitive device, in the form of a supercapacitor (8), for powering circuit (4). A regulator unit, in the form of an inductive regulator (10), charges supercapacitor (8).
摘要:
A surface mount energy storage device in the form of a supercapacitor (1) includes a generally rectangular folded prismatic housing (2) and two energy storage elements (not shown) that are sealingly contained within the housing (2) and which are connected in series. A mount, in the form of an integrally formed tinned metal frame (3), extends about and captively retains housing (2) in the folded configuration shown. Two terminals, in the form of elongate contacts (4, 5) extend from the energy storage elements and terminate outside housing (2) for allowing external electrical connection to the elements.
摘要:
A charge storage device comprising: a first electrode; a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connect to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram. Also described is a method of manufacturing a charge storage device, the method comprising the steps of: providing a first electrode; disposing a second electrode in opposition to and spaced apart from the first electrode; disposing a porous separator between the electrodes; containing within a sealed package the electrodes, the separator and an electrolyte, wherein the electrodes are immersed in the electrolyte; and electrically connecting a first terminal and a second terminal to the first electrode and the second electrode respectively such that the terminals extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
摘要:
The invention relates to energy storage devices such as capacitors and supercapacitors and non-aqueous solvent systems suitable for use as an electrolyte solvent therein. Devices incorporating the solvent system are suitable for use in, for example, wireless devices or automotive applications at high temperatures with minimal, if any mass loss. The solvent system has at least one low boiling component (preferably a nitrile, eg acetonitrile) at least one high boiling component compatible with said low boiling component (preferably lactones, eg γ-butyrolactone and/or organic carbonates eg ethylene carbonate or propylene carbonate); and wherein the components are selected in an amount such that said non-aqueous solvent system does not boil at the boiling point of the low viscosity solvent alone but has a boiling point greater than said low viscosity solvent alone.
摘要:
A supercapacitor capable of withstanding SMT manufacturing conditions comprising at least one pair of electrodes having a mixture of carbon particles preferably in a CMC binder on facing surfaces of the at least one pair of electrodes; a porous separator, preferably polyimide, positioned between the facing surfaces of the at least one pair of electrodes; and an electrolyte for wetting the separator wherein the electrolyte comprises an ionic liquid, such as EMITSFI, and optionally a solvent such as PC, GBL or glutaronitrile.