Abstract:
The multistep injection molding device is for manufacturing thick lenses for use with an illumination apparatus. The injection molding device includes two sets of mold core inserts forming mold cavities when the injection molding device is in a closed position. The lens core part is formed in a first injection shot station. The molded lens core part is then moved to a post-molding cooling station in which it is further cooled inside a corresponding mold cavity. Two outer lens parts are formed sequentially over the lens core part in second and third injection shot stations. A method of manufacturing a thick lens is also disclosed.
Abstract:
The injection molding apparatus is provided for making highly accurate optical parts having structured reflective or deflecting optical surfaces. The apparatus includes a removable mold insert made of two or more mold insert segments. The mold insert segments are juxtaposed at mating lateral planar surfaces to form a reversed structured surface. The mold insert segments also includes a gas venting circuit having conduits formed when the mold insert segments are juxtaposed. A cooling circuit is provided in the mold insert segments.
Abstract:
A composite high sag thick lens for automotive lighting is used in conjunction with a solid state illumination source, such as a white LED. The composite high sag thick lens is made of a first lens section having an optical active curve surface and a series of elongated baffles, the baffles having a top portion, the top portions defining a line that follows the curvature of the active surface to create an upper lens portion of uniform thickness. A second lens section is fused to the first lens section to create the composite lens. The second lens has an optical active surface and a series of elongated baffles the baffles having a thickness comparable to the thickness of the corresponding optical active surface. The first and the second plurality of baffles are intertwined along the entire length of their lateral surfaces.
Abstract:
Spacers or wedges are disclosed for use in combination with mold elements such as lens and/or reflex reflector pins in a pin block or matrix assembly. Such assemblies are used in the manufacture of molds for producing, for example, front and/or rear light units for motor vehicles. The wedges or spacers are selectively located between rows or banks of reflex or optic pins to provide required orientation to selected groups of the pins so that the necessary reflectivity of the finished product is provided in the curved portion thereof.
Abstract:
An injection process for forming a retroreflector on a matrix mold having a plurality of prisms that each define a cavity. The process includes the steps of a) injecting a first layer of plastic on the matrix mold for partially filling up each prism up to a predetermined uniform thickness so as to define a recessed portion corresponding with each cavity of the prisms; and b) injecting a second layer of plastic onto of the first layer, the second layer filling up the recessed portion defined in each cavity of the prisms so that second layer defines a flat portion on an exterior side of the second layer.
Abstract:
The illumination optic is a collimator lens having a solid monolithic structure that includes spaced-apart and longitudinally-extending side lobed segments laterally disposed around a central core section. Each lobed segment has a TIR inner peripheral surface extending from a rear side towards a front side of the collimator lens and has a light exit surface generally facing the front side. Also disclosed is an illumination device including the collimator lens and a diffusion lens that is coaxially positioned next to its front side to redirect light coming out of the light exit surfaces. The diffusion lens has spaced-apart outlying optical regions disposed around a central optical axis, at least one for each light exit surface, to be selectively positioned in or out of alignment with a corresponding one of the light exit surfaces depending on a relative angular position between the collimator lens and the diffusion lens.
Abstract:
An optical system having a solid state light source, such as an LED of any spectrum, includes a lens that provides an output illumination pattern of uniform distribution over a remote and larger target. The lens does not have an axis of revolution. The lens has a generally non-circular outer shape in cross section and on top views, where the outer optical surfaces are angled one relative to another. The lens includes refractive and reflective active optical surfaces to split, direct and shape the incoming beam from the light source towards the target in the form of several angled beams of prescribed energies calculated as a function of the shape of the target and distance to the target. The lens has an inner primary and partially open optical cavity of a polygonal cross section facing the light source. This optical cavity has a number of refractive optical surfaces whose shape and number is determined by the number of and shape of the illumination beams generated in conjunction with the other surfaces of the lens. This novel optical system may include an array of white LEDs that generate the input illumination to an array of these lenses to insure the proper illumination level and uniformity at particular remote targets.
Abstract:
A moulding process to manufacture a moulded piece having multiple individual optical elements with the same or different dimensions. This is achieved by using a multicolour injection process as well as a multidrop injection manifold. In the first step, the optical elements are moulded without any junction between them. In the second step, a layer of plastic is moulded in order to join together all the optical elements to create a single piece. The moulded piece thus consists of two plastic injections with optical elements which is more easily adaptable to a variety of different designs for lights having two or more colors. New styles of optical elements, along with varied and original geometric arrangements can thus be imagined. Furthermore, signaling functions having by their regulations different colors can heretofore be placed within a same zone of glass.
Abstract:
A lens (10) is disclosed for use on automotive vehicles and which forms part of lamp assemblies used on the rear, front or side surfaces thereof. The lens utilizes a combination of optical elements (25) and reflex elements (24) interspersed therewith, the density of the reflex elements (24) relative to the optic elements (25) being graduated in selected areas of the lens surface, for example from the stop or brake light area (12) of the lens through the "running light" area (14) to a fog area (16). One form of the invention has the optic elements (25) and the reflex elements (24) on a single lens surface and, in another embodiment, the optic elements (25) of the lens (10) are located on one lens surface (52) and the reflex elements (24) are located in juxtaposition outwardly thereof on a second lens surface (48) and spaced from one another so that the reflex elements (24) are axially interspersed between the optic elements (25). The method of manufacturing both forms of lenses is also disclosed.