Abstract:
A microelectronic unit includes a semiconductor element having a front surface to which a packaging layer is attached, and a rear surface remote from the front surface. The element includes a light detector including a plurality of light detector element arranged in an array disposed adjacent to the front surface and arranged to receive light through the rear surface. The semiconductor element also includes an electrically conductive contact at the front surface connected to the light detector. The conductive contact includes a thin region and a thicker region which is thicker than the thin region. A conductive interconnect extends through the packaging layer to the thin region of the conductive contact, and a portion of the conductive interconnect is exposed at a surface of the microelectronic unit.
Abstract:
Providing for a wafer level optical system employing composite lenses is disclosed herein. Conventional focus lens assemblies require three or more lenses. By way of example, two composite lenses can be used to reduce the cost of a wafer-level camera. In some aspects, the composite lenses can be aspheric and can employ a broader variety of wafer materials than earlier designs that only operated in narrow ranges of refractive indices and Abbe numbers.
Abstract:
A camera including a mount substrate, a detector on a first surface of the mount substrate, a spacer on the mount substrate, the spacer including a hole exposing the detector, a cover on the spacer, the cover covering the hole, the mount substrate, the spacer and the cover together sealing the detector, the cover having a planar surface facing the detector, and an external electrical interconnection for the detector provided outside the sealing, the external electrical interconnection being on a first surface and a second surface, different from the first surface, of the mount substrate, the external electrical interconnection adapted to connect the detector to an electrical contact pad.
Abstract:
A camera includes a first substrate having top and bottom surfaces, a second substrate having top and bottom surfaces, a spacer substrate between a substantially planar portion of the top surface of the second substrate and a substantially planar of the bottom surface of the first substrate, at least two of the first substrate, the second substrate and the spacer substrate sealing an interior space, a detector within the interior space, and an electrical interconnection extending from the detector to outside the interior space.
Abstract:
An optical chassis includes a mount substrate an optoelectronic device on the mount substrate, a spacer substrate, and a sealer substrate. The mount substrate, the spacer substrate and the sealer substrate are vertically stacked and hermetically sealing the optoelectronic device. An external electrical contact for the optoelectronic device is provided outside the sealing. At least part of the optical chassis may be made on a wafer level. A passive optical element may be provided on the sealer substrate or on another substrate stacked and secured thereto.
Abstract:
A method of making a plurality of micro-optical systems includes providing a plurality of diffractive optical elements and aligning each diffractive optical element with a refractive optical element. Each micro-optical system includes a refractive optical element and a diffractive optical element. The diffractive optical element provides different focal lengths at three different wavelengths for each micro-optical system and includes adjacent steps within a cycle having a difference of more the 2π for at least one of the three different wavelengths.
Abstract:
A wavelength locker for use at more than one wavelength includes filters with different characteristics for a corresponding detector. The filters may be etalons having different free spectral ranges, e.g., having different apparent or real thicknesses. If more than three such filters are used outputting offset periodic signals, a reference detector may be eliminated and continuous operation over a wavelength range may be realized.
Abstract:
An optical assembly includes a first transparent substrate having first and second surfaces, a second transparent substrate having substantially parallel third and fourth surfaces, a reflective portion on the second transparent substrate, a plurality of filters between the first substrate and the reflective portion, the plurality of filters filtering light beams incident thereon, the plurality of filters and the reflective portion forming a bounce cavity within the second transparent substrate, a collimating lens for collimating light beams to be input to the bounce cavity, a tilt mechanism for introducing tilt to light beams input to the bounce cavity; an input port receiving light beams and an output port transmitting light beams. The tilt mechanism may be between the first and second substrate.
Abstract:
A thin camera having sub-pixel resolution includes an array of micro-cameras. Each micro-camera includes a lens, a plurality of sensors of size p, and a plurality of macro-pixels of size d having a feature of size q. The feature size q smaller than p and provides a resolution for the micro-camera greater than p. The smallest feature in the micro-cameras determines the resolution of the thin camera. Each macro-pixel may have any array of m features of size q, where q=d/m. Additional micro-cameras may be included to increase power.
Abstract:
A camera including a mount substrate, a detector on a first surface of the mount substrate, a spacer on the mount substrate, the spacer including a hole exposing the detector, a cover on the spacer, the cover covering the hole, the mount substrate, the spacer and the cover together sealing the detector, the cover having a planar surface facing the detector, and an external electrical interconnection for the detector provided outside the sealing, the external electrical interconnection being on a first surface and a second surface, different from the first surface, of the mount substrate, the external electrical interconnection adapted to connect the detector to an electrical contact pad.