Abstract:
This vehicle mechanical component includes a mechanical component body, a heat insulating layer formed on the mechanical component body, and a protective layer formed on the heat insulating layer and including an inorganic compound that includes an alkoxide and scale-like inorganic solid particles dispersed in the inorganic compound.
Abstract:
Provided is a heat shielding film that is free from release or the like even where the heat shielding film is formed on a top surface of a piston and used in a severe environment such as the inside of an engine combustion chamber, and a vehicular heat shielding component on which the heat shielding film is formed. The vehicular heat shielding component of the present invention is one in which a heat shielding film (1) is formed on at least a part of the surface of a heat shielding target component (2) such as a piston of an engine to be given heat shielding properties. The heat shielding film (1) contains at least an inorganic compound layer (10) having a Vickers hardness (HV) of 50 to 100 in which one or a plurality of types of scale-like inorganic particles (12) selected from a group comprising mica, talc, and wollastonite are dispersed in an inorganic compound (11) formed of an alkoxide. By burning the inorganic compound layer (10) through irradiation of light having a wavelength of 500 nm or less, it is possible to increase the hardness of the inorganic compound layer (10) to 50 to 100 HV described above while suppressing an increase in temperature of the heat shielding target component (2).
Abstract:
A composition for a lubricating film includes molybdenum disulfide particles which are dispersed, and a binding resin, and is a composition for coating a surface of a base material made of metal with a lubricating film in which the molybdenum disulfide particles are bound together by the binding resin. The composition for a lubricating film contains 50 mass % to 70 mass % of the molybdenum disulfide particles with respect to a total amount of the molybdenum disulfide particles and the binding resin. An average particle size of the molybdenum disulfide particles is in a range of 0.1 μm to 3.0 μm.
Abstract:
A wafer-retaining elastic film of a CMP device includes: a film body comprised of an elastic material; and a coating layer formed so as to cover the surface on the wafer retaining side of the film body. The coating layer contains a polymeric binder and nonmetallic particles dispersed in the polymeric binder.
Abstract:
Any one or more members of an engine, that is, a piston, a cylinder head and a valve, has a wall face disposed face-to-face to a combustion chamber, and the wall face is coated by a heat-insulation coating film. The heat-insulation coating film includes a heat-insulative layer formed on a surface of the wall face, and an inorganic-system coated-film layer formed on a surface of the heat-insulative layer. The heat-insulative layer includes a resin, and first hollow particles buried inside the resin and exhibiting an average particle diameter being smaller than a thickness of the heat-insulative layer. The inorganic-system coated-film layer includes an inorganic compound.
Abstract:
Any one or more members of an engine, that is, a piston, a cylinder head and a valve, has a wall face disposed face-to-face to a combustion chamber, and the wall face is coated by a heat-insulation coating film. The heat-insulation coating film includes a heat-insulative layer formed on a surface of the wall face, and an inorganic-system coated-film layer formed on a surface of the heat-insulative layer. The heat-insulative layer includes a resin, and first hollow particles buried inside the resin and exhibiting an average particle diameter being smaller than a thickness of the heat-insulative layer. The inorganic-system coated-film layer includes an inorganic compound.