Abstract:
A centralized monitoring unit for an agricultural implement is disclosed herein. The monitoring unit is preferably used with a planting system including a planting implement coupled to a work vehicle. The implement includes a frame supporting row units which are configured to apply a product (e.g., seed, fertilizer, insecticide, herbicide) to the rows in a field. The monitoring unit includes a product delivery apparatus which has at least one product channel for delivering the product to the row units, and an electronic product sensor which is coupled to the product delivery apparatus and configured to generate a product signal representing an amount of the product which moves through the product channel. An electronic display located in the cab of the work vehicle is configured to generate an image in response to a display signal. A processor circuit is configured to monitor the product signal, calculate application progress statistics, calculate implement statistics, calculate product rate statistics and apply the display signal to the electronic display to generate the image on the electronic display representative of the application progress statistics, the implement statistics and the product rate statistics.
Abstract:
A system for controlling a function of a machine system including an off-road work vehicle, a moveable device, and a positioning assembly including an actuator for moving the device in response to a control signal. The system includes an operator-adjustable input device which generates an input signal, and a control circuit which generates the control signal for moving the moveable device in a first or a second manner depending upon the rate of change of the input signal. The first manner is selected when the input signal changes slowly, and the second manner is selected when the input signal changes quickly. The system may include a sensor for sensing a parameter of the machine system and a command device for generating a command signal. A control signal is generated based at least upon the difference between the sensed parameter and command signals. Also disclosed is a system for controlling the elevation of an implement carried or trailed by a work vehicle. An implement positioning assembly includes an actuator for raising and lowering the implement in response to a control signal. The control signal is generated in a first manner when the command signal changes slowly, and in a second manner when the command signal changes quickly. An input device can also be used to override the normal rate of movement of an actuator with a slower value.
Abstract:
A system for physically positioning a hitch assembly at an initialized position prior to subsequent automatic control of the hitch position. The system includes an actuator for positioning an implement coupled to a work vehicle in response to control signals generated by a control circuit. The control circuit compares the sensed implement position to a predetermined position and, based upon the comparison, commands movement of the implement to an initialized position upon receipt of an input signal generated by an input device. The system may include an upper limit device or position command device used to set the predetermined position, and may include a display which indicates when the implement position is above the upper limit position or not equal to the commanded position. The input signal may be processed in another manner when the implement position is not above the limit position and is equal to the commanded position upon start-up. A method includes the steps of detecting the actual position of a structure which supports the implement, comparing the actual position to a predetermined position, awaiting an operator-induced initialization signal based upon the comparison, and moving the support structure to an initialized position following receipt of the initialization signal.
Abstract:
A farming system which identifies the boundaries of agricultural fields and performs functions based upon whether a vehicle is located within a particular field is disclosed. The system includes a location signal generation circuit which receives positioning signals and generates location signals representative of the location of the vehicle. The system further includes a memory circuit which stores geo-referenced digital maps of the fields and may include boundary data or application maps for each field. The system further includes a control circuit which compares the location signals to the data stored in the memory circuit to determine when the vehicle is located in a particular field. In one embodiment, the control circuit selects a variable-rate application map for the particular field and generates variable-rate control signals from the map data which are applied to a variable-rate applicator. In another embodiment, the control circuit stores characteristic data sensed by a sensing circuit with correlated location signals in a geo-referenced digital map for the particular field. In another embodiment, the control circuit generates height control signals to raise and lower an agricultural tool such as a tractor plow or a combine header based upon relationships between the location of the tool in a field and the location of attributes in the field such as field boundaries or obstructions.
Abstract:
A system for regulating wheel slippage of a vehicle carrying or trailing an implement. The system includes sensors for sensing the vehicle's apparent speed and ground speed and an input device. The system also includes a control circuit configured to generate a slip signal based at least upon the apparent speed and the ground speed, and to generate a control signal applied to an actuator for moving the implement. The input device can be manipulated to enable and disable slip regulation and to set a slip reference value. The input device can be manipulated to derive the slip reference value from the slip signal, and to increment and decrement the slip reference value. The control circuit regulates wheel slippage by modifying the control signal when the slip signal exceeds the slip reference value with slip regulation enabled. Also, in a vehicle coupled to an implement, an input device can be manipulated to derive a parameter reference value from an operating parameter, and to increment and decrement the parameter reference value based upon further manipulation of the input device, and a control circuit generates a control signal for moving the implement based upon the difference between the operating parameter and the parameter reference value.
Abstract:
A hitch assembly control system including an actuator which positions the hitch assembly in response to control signals provided to an electrically driven actuator. The control system further includes an electronic controller operated under the influence of a program for deriving the control signals for the actuator from a series of inputs which monitor and measure various performance criteria. The program functions to operate the hitch assembly in a plurality of different operating states. In a DRAFT state, the hitch assembly position is controlled under the influence of at least four independently set variables. The control system of the present invention is capable of calibrating the hitch assembly configuration as well, as the limits of hitch assembly operation. Moreover, the control system of the present invention is capable of detecting, categorizing and recording failures which occur in the various states of hitch assembly operation. The control system of the present invention furthermore is capable of maintaining a substantially constant rate of elevational movement of the hitch assembly regardless of the weight of the ground engaging assembly attached to the hitch assembly.
Abstract:
A control system for a hitched or trailed implement coupled to a work vehicle is disclosed herein. The control system allows control to be selectively transferred between various types of implements by use of a hydraulic selector valve. An electronic control unit controls the actions of a hitch assembly actuator, a trailed implement, an auxiliary device, or some combination thereof as determined by the configuration of the hydraulic selector valve.
Abstract:
A system for reducing oscillations of an implement carried by a vehicle in a lifted position during travel. The implement is coupled to an implement positioning system including an actuator for raising and lowering the implement in response to a control signal. The system includes at least one load sensor for sensing implement load, a position sensor for sensing implement position, and a control circuit configured to generate a control signal to the actuator in a first manner based at least upon implement position and in a second manner based at least upon implement load. The control circuit transitions from the first manner of operation to the second manner of operation upon detecting oscillations of the implement beyond a predetermined magnitude. The control circuit improves roadability of the vehicle by operating in a roadability mode including the first and second manners of operation wherein the roadability mode is entered based at least upon the implement being in a lifted position and vehicle speed being greater than a predetermined threshold speed.
Abstract:
An apparatus and method is disclosed for wireless remote control of an output element coupled to a work vehicle. The output element performs work external to the vehicle and is actuated by an actuator controlled by an output controller in response to at least a remote control signal. The apparatus includes a wireless remote transmitter movable with respect to the vehicle and a wireless receiver supported by the vehicle. The transmitter has an actuatable input device for generating a command signal, a transmitter antenna, and a transmitter control circuit which receives the command signal from the input device, generates the remote control signal in response to the command signal, and applies the remote control signal to the transmitter antenna for wireless transmission to the work vehicle. The receiver includes a receiver antenna and a receiver control circuit which receives the remote control signal from the receiver antenna after transmission by the transmitter, and applies the remote control signal to the output controller.
Abstract:
A system or method for controlling the position of an implement coupled to a work vehicle. The implement is moveable by a hydraulic positioning assembly including an actuator and a valve assembly which control the flow of fluid to the actuator in response to control signals. The valve assembly includes raise and lower valves, each valve requiring a control signal equal to a threshold value before the valve opens and fluid begins to flow. The system includes a sensor to detect the position of the implement and a control circuit. In response to a change in a position command, the control circuit applies a control signal to the appropriate raise or lower valve based upon the respective threshold value. The control signal is generated by using a predetermined gain. When undesirable implement movement such as an overshoot condition is detected, the control circuit modifies the gain value. The modified gain value is used to generate subsequent control signals for actuating the implement.