Abstract:
Provided is a control apparatus for an internal combustion engine that can suppress blowback of in-cylinder residual gas to an intake passage when reverting from a fuel-cut operation accompanied by valve stopping control of an intake valve while suppressing an oil ascent during execution of the fuel-cut operation, and a control apparatus for a vehicle equipped with the internal combustion engine. When executing a fuel-cut operation accompanied by intake valve stopping control, advancement control of the opening/closing timing of an exhaust valve (32) is executed. If the advancement control is being executed in a case where a request to revert from the fuel-cut operation has been detected, an advance amount of the opening/closing timing of the exhaust valve (32) is retarded so as to become less than or equal to a predetermined value.
Abstract:
To provide a vehicle provided with a valve-stop-mechanism-equipped internal combustion engine capable of ensuring a negative pressure in a brake booster while preventing with reliability fresh air from flowing into a catalyst during a valve stop control. An internal combustion engine provided with a valve stop mechanism capable of changing the operational state of an intake valve between a valve operating state and a valve closed/stopped state is provided. A brake booster is provided capable of assisting operation of a brake pedal of the vehicle. Exhaust side negative pressure passages are provided as communication passages that are configured to be in communication with each branch pipe section of an exhaust manifold in a period in which a negative pressure is generated in the case where the intake valve is in the valve closed/stopped state while an exhaust valve is allowed to open and close. The remaining end of the second exhaust side negative pressure passage is connected to the brake booster.
Abstract:
This control device for an internal combustion engine includes a variable intake valve device and a variable exhaust valve device; and it performs fuel cut-off for a plurality of cylinders of the internal combustion engine. And it further includes: an intake valve control means which, when the fuel cut-off execution condition has come into effect, controls the variable intake valve device, so as to keep in a closed state the intake valve of a cylinder, for which an exhaust valve is not kept in a closed state; and an exhaust valve control means which, when the fuel cut-off execution condition has come into effect, controls the variable exhaust valve device, so as to keep in an open state an exhaust valve of at least a pair of cylinders, between which gases in the pair of cylinders come and go via an exhaust passage as the pistons operate.
Abstract:
A managing device having a simple structure for an umbilical member or a conduit and a robot having the managing device, by which an interference region of the conduit is reduced as much as possible and the undesirable excess length of the conduit may be cancelled without using an auxiliary device. A first conduit supporting member is arranged on an upper arm of the robot and a second conduit supporting member is arranged on a wrist element of the robot. The conduit is fixed to or twistably supported by the first and second supporting member. Further, the conduit is held by a holding member, mounted between the first and second supporting member, in particular, adjacent to the side of a forearm of the robot, such that the conduit may slide relative to the holding member and may rotate about axes along and perpendicular to the sliding direction of the conduit. As the holding member is positioned as close to the forearm as possible, a gap between the conduit and the forearm is reduced and the possibility of interference between the conduit and an external equipment may be minimized.
Abstract:
Provided is a control apparatus for an internal combustion engine that can suppress blowback of in-cylinder residual gas to an intake passage when reverting from a fuel-cut operation accompanied by valve stopping control of an intake valve while suppressing an oil ascent during execution of the fuel-cut operation, and a control apparatus for a vehicle equipped with the internal combustion engine. When executing a fuel-cut operation accompanied by intake valve stopping control, advancement control of the opening/closing timing of an exhaust valve (32) is executed. If the advancement control is being executed in a case where a request to revert from the fuel-cut operation has been detected, an advance amount of the opening/closing timing of the exhaust valve (32) is retarded so as to become less than or equal to a predetermined value.
Abstract:
A valve drive system comprises a power transmitting mechanism (13) that converts rotary motion of an electric motor (12) into opening and closing motion of an intake valve (3) provided in a cylinder (2) of an internal combustion engine (1) to transmit power from the electric motor (12) to the valve (3) via a cam (152); and a rotational angle restricting mechanism (16) that is provided in a motion transmission path that extends from the electric motor (12) to the cam (152) and restricts rotation of the cam (152) within a predetermined angular range that is set so that a piston (5) of the engine (1) and the intake valve (3) do not interfere with each other. The rotational angle restricting mechanism (16) comprises a flange (161) that rotates as a unit with a camshaft (151) and forms a slotted groove hole (161a) thereon; and a stopper pin (162) that is inserted into and retracted from the groove hole (161a).
Abstract:
A variable valve actuation apparatus for an internal combustion engine includes a first link arm which has a projected portion that is engageable with and disengageable from a guide rail, and which is displaceable in the axis direction of a camshaft, and a link shaft linked to the first link arm in such a manner as to allow rotation but constrain movement in the axis direction. When an electro-magnetic solenoid is electrified, the first link arm rotates about the link shaft so that the projected portion engages with the guide rail. In association with the displacement of the link arms that occurs during the engagement, the state of motion of second rocker arms changes, so that the opening characteristic of valves provided for each cylinder is switched.
Abstract:
This control device for an internal combustion engine includes a variable intake valve device and a variable exhaust valve device; and it performs fuel cut-off for a plurality of cylinders of the internal combustion engine. And it further includes: an intake valve control means which, when the fuel cut-off execution condition has come into effect, controls the variable intake valve device, so as to keep in a closed state the intake valve of a cylinder, for which an exhaust valve is not kept in a closed state; and an exhaust valve control means which, when the fuel cut-off execution condition has come into effect, controls the variable exhaust valve device, so as to keep in an open state an exhaust valve of at least a pair of cylinders, between which gases in the pair of cylinders come and go via an exhaust passage as the pistons operate.
Abstract:
The present invention makes it possible to favorably change valve-opening characteristics of a valve using a simplified configuration without leading to an increase in the number of components and also without causing an increase of friction due to sliding, in a valve operating apparatus for an internal combustion engine in which the valve-opening characteristics of the valve are variable. A changeover mechanism for switching the connection/disconnection of rocker arms disposed between cams and a valve is provided. When a slide pin reaches a displacement end in the retreating direction of changeover pin, the biasing force of a return spring acting on changeover pins is received by an engaging part between a notch part provided in the slide pin and a lock pin in a state separated from a camshaft.
Abstract:
Provided is a variable valve operating apparatus for an internal combustion engine, which can switch, based on an actuation of a single actuator, operating characteristics of valves for a plurality of cylinders collectively and smoothly using a rigid member, while suppressing an increase in wear of a guide rail and reducing the number of delay mechanisms.A changeover mechanism to switch operating characteristics of valves for each cylinder of first and second cylinder groups is provided. The changeover mechanism includes link shafts as a rigid member which is displaced when being engaged with a helical guide rail as a result of the actuation of an electromagnetic solenoid. The changeover mechanism includes a delay mechanism, which delays the displacement of the second link shaft in a cylinder in which the valves are lifting when the electromagnetic solenoid is actuated, at some point in the link shafts between the first cylinder group and the second cylinder group.