摘要:
Analyte ions are analyzed first by field asymmetric ion mobility spectrometry (FAIMS) before being analyzed by a mass analyzer. Analyte ions are produced at near atmospheric pressure and transferred via a dielectric capillary into the vacuum system of the mass analyzer. While passing through the capillary, the ions are analyzed by FAIMS via electrodes on the interior wall of the capillary. Improved ion transmission is achieved by providing smooth geometric transitions between the channel in FAIMS analyzer and the channel in the remainder of the capillary.
摘要:
Analyte ions are analyzed first by field asymmetric ion mobility spectrometry (FAIMS) before being analyzed by a mass analyzer. Analyte ions are produced at near atmospheric pressure and transferred via a dielectric capillary into the vacuum system of the mass analyzer. While passing through the capillary, the ions are analyzed by FAIMS via electrodes on the interior wall of the capillary. Improved ion transmission is achieved by providing smooth geometric transitions between the channel in FAIMS analyzer and the channel in the remainder of the capillary.
摘要:
Ions with a predetermined ion mobility range are produced by filtering ions entrained in a stream of moving gas with two ion mobility low pass filters located consecutively in the gas stream. Each filter is formed by applying a DC electric field to the gas stream which causes the ions to move in a direction opposite to the gas flow. Ions are collected between the two filters and transferred to a detector or analyzing device. In one embodiment, the maximum field strength of the electric field barrier in the first ion mobility low pass filter is continued as a plateau of essentially constant field strength up to the electric field barrier in the second ion mobility low pass filter, which has a maximum field strength higher that the maximum field strength of the electric field barrier in the first ion mobility low pass filter.
摘要:
The invention relates to a device for performing electron capture dissociation on multiply charged cations. Provided is an electron emitter which, upon triggering, emits a plurality of low energy electrons suitable for efficient electron capture reactions to occur. Further, the device contains a particle emitter being located proximate to the electron emitter and being capable, upon triggering, to emit a plurality of high energy charged particles substantially in a direction towards the electron emitter in order that the electron emitter receives a portion of the emitted plurality of high energy charged particles and emission of the plurality of low energy electrons is triggered. A volume capable of containing a plurality of multiply charged cations is located in opposing relation to the electron emitter such that the volume receives the plurality of low energy electrons upon emission as to allow electron capture dissociation to occur.
摘要:
In a linear ion trap, ions with two polarities are confined radially via an RF potential between the rods comprising the trap. Axially, ions of at least one polarity are confined via DC potentials applied to the elements of the trap or electrodes at the ends of the trap whereas ions of the other polarity are axially confined by a combination of pseudopotentials and/or DC potentials.
摘要:
Ions with a predetermined range of ion mobilities are produced by filtering input ions with at least two consecutive ion mobility high pass and/or low pass filters. Each ion mobility filter is formed by entraining ions in a moving gas and applying a DC electric field to the ions which causes the ions to move in a direction opposite to the gas flow. An ion mobility high pass filter is formed when the DC electric field drives the ions against the flow of gas, whereas an ion mobility low pass filter is formed when a the gas flow drives entrained ions against an DC electric field barrier.
摘要:
In an ion mobility spectrometer in which a gas flows through a gas-tight tube with a radially quadrupolar RF field therein and blows ions against a DC electric field barrier, a mobility scan with a mobility scale that is linear in time is obtained by holding the height of the DC electric field barrier constant while changing the pressure and temperature conditions of the flowing gas. Alternatively, the mobility scan is performed by holding the pressure and temperature conditions of the flowing gas constant and reducing the height of the DC electric field barrier non-linearly with respect to time.
摘要:
Ions with a predetermined ion mobility range are produced by filtering ions entrained in a stream of moving gas with two ion mobility low pass filters located consecutively in the gas stream. Each filter is formed by applying a DC electric field to the gas stream which causes the ions to move in a direction opposite to the gas flow. Ions are collected between the two filters and transferred to a detector or analyzing device. In one embodiment, the maximum field strength of the electric field barrier in the first ion mobility low pass filter is continued as a plateau of essentially constant field strength up to the electric field barrier in the second ion mobility low pass filter, which has a maximum field strength higher that the maximum field strength of the electric field barrier in the first ion mobility low pass filter.
摘要:
In an RF quadrupole ion trap having electrodes to which RF voltages are applied, ions having m/z ratios outside of a predefined narrow range of charge-related masses m/z are removed from the trap by applying a DC voltage pulse to at least one of the trap electrodes to remove from the trap the ions with high values of charge-related masses. The DC voltage pulse is preferably applied in combination with a variation of the RF voltage amplitudes to simultaneously remove from the trap ions of low charge-related masses. The DC and RF voltage amplitudes are changed in such a manner that any excitation of ions having charge-related masses within the predefined range by frequency mixtures is avoided.
摘要:
Ions with a predetermined range of ion mobilities are produced by filtering input ions with at least two consecutive ion mobility high pass and/or low pass filters. Each ion mobility filter is formed by entraining ions in a moving gas and applying a DC electric field to the ions which causes the ions to move in a direction opposite to the gas flow. An ion mobility high pass filter is formed when the DC electric field drives the ions against the flow of gas, whereas an ion mobility low pass filter is formed when a the gas flow drives entrained ions against an DC electric field barrier.