Abstract:
The disclosure provides an HVAC data processing and communication network. In an embodiment, the network includes a first zone and a second zone. The first zone has a first demand unit and a first subnet controller configured to control an operation of the first demand unit via a data bus. The second zone has a second demand unit and a second subnet controller configured to control an operation of the second demand unit via the data bus. The second subnet controller is further configured to communicate with the first subnet controller via the data bus.
Abstract:
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In an embodiment, the HVAC data processing and communication network includes at least one environmental sensor, at least one subnet and a subnet controller. The subnet controller is configured to discover the at least one environmental sensor, the at least one subnet and at least one damper controller. The subnet controller is further configured to set up the network for zoned operation in the event that at least two of the at least one environmental sensor are discovered.
Abstract:
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In an embodiment, the network includes a first subnet controller and a system device. The first subnet controller is coupled to a data bus and configured to arbitrate with a second subnet controller for control of the subnet. The system device is configured to transition from a reset state to a first state that includes pre-startup tasks, and transition from the first state to a second state that includes waiting for the subnet controller to provide configuration parameters to the system device.
Abstract:
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In an embodiment, the method includes configuring a subnet controller. The subnet controller is configured to assign to a first device associated with the network a first equipment type number based on a first device ID number and a first offset. The subnet controller is configured, in the event that the first device shares a same enclosure with a second device associated with the network, to assign to the second device a second equipment type number based on the first device ID number and a second offset. The subnet controller is configured, in the event that the first device does not share a same enclosure with the second device, to assign to the second device the second equipment type number based on a second device ID number and the second offset.
Abstract:
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In one embodiment the network includes a system device and a user interface. The system device is configured to generate and locally store an alarm record in response to an alarm event. The system device is further configured to receive an alarm request message via a data bus. In response to receiving the alarm request message, the system device is configured to publish an alarm reporting message over the data bus. The user interface is configured to receive the alarm message and display an alert depending on a state of the flag.
Abstract:
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In an embodiment, the method includes configuring a user interface to receive a first parameter setting associated with a system device. The user interface is further configured to send a message to the system device including the first parameter setting. The user interface is further configured to receive from the system device a second parameter setting that is dependent on the first parameter setting. The user interface is further configured to make the second parameter setting available for viewing.
Abstract:
The disclosure provides an HVAC data processing and communication network. In an embodiment, the network includes a user interface, a first subnet controller and a second subnet controller. The first subnet controller is configured to operate with a first zone of the network with a first program schedule. The second subnet controller is configured to operate with a second zone of the network with a second program schedule. The second subnet controller is further configured to override the first and second schedules to operate the first and the second zones according to hold settings received from the user interface.
Abstract:
The disclosure includes an HVAC data processing and communication network, and a method of manufacturing the same. In one embodiment the HVAC data processing and communication network includes a system device and a user interface. The system device is configured to store alarm data in local memory in response to an alarm event. The user interface is configured to send an alarm request message to the system device, and to receive an alarm reporting message including alarm data from the system device via a data bus.
Abstract:
The disclosure provides systems and methods of use of an HVAC graphical interface dashboard. In various embodiments, the dashboard includes a weather tab, wherein invoking the weather tab advances to a weather screen. The dashboard also includes an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity. The dashboard further includes an alerts tab, wherein invoking the alerts tab advances to an alerts screen. The dashboard still further include an indoor settings tab, wherein invoking the indoor settings tab advances to an indoor settings screen which includes a current indoor temperature. A programs tab and a home tab are also provided, wherein a programs screen includes a display of a plurality of pre-populated program schedule settings.
Abstract:
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In one embodiment the network includes a system device and a user interface. The system device is configured to generate and locally store an alarm record in response to an alarm event. The system device is further configured to receive an alarm request message via a data bus. In response to receiving the alarm request message, the system device is configured to publish an alarm reporting message over the data bus. The user interface is configured to receive the alarm message and display an alert depending on a state of the flag.