摘要:
A method of optical pulse propagation via a dispersive optical fibre, the method comprising the steps of: launching the optical pulses into the fibre at a pulse intensity sufficient to provide non-linear dispersion compensation during propagation through a first portion of the fibre; and providing a counter-chirping device to substantially compensate for the dispersion of a remaining, second portion of the fibre.
摘要:
An optical source 10 comprising an optical output 12, a pump optical source 14, an optical splitter arranged to receive an optical signal from the pump optical source and to split the optical signal into a pump signal and a seed pump signal. A seed signal forming apparatus 18 is arranged to receive the seed pump signal at the pump wavelength and to transform the seed pump signal into a seed signal at a seed wavelength. A first microstructured optical fiber (MSF1) 20 is arranged to receive the pump signal and the seed signal. MSF1 is arranged to cause the pump signal to undergo four-wave mixing seeded by the seed signal on transmission through MSF1 such that a first optical signal at a signal wavelength and second optical signal at an idler wavelength are generated. One of the signal wavelength and the idler wavelength are the seed wavelength and one of the first and second optical signals are provided to the optical output.
摘要:
An optical pulse source comprising a DPSS pump laser, a photonic crystal fiber (PCF), and acousto-optic modulator (AOM) gating device is disclosed. The pump pulses are coupled through lenses to the AOM gating device, which is synchronized to the pump laser and is operable to gate the pump pulses to a reduced repetition rate Rr=Rf/N, where Rf is the pump laser fundamental frequency. The pulses from the AOM are injected via optics into the PCF. Propagation through the PCF causes the pulses to broaden spectrally to produce optical supercontinuum pulses. An optical pulse source that further includes an acousto-optical tunable filter (AOTF) operable to convert the optical supercontinuum pulses into wavelength variable output pulses is also provided. A method of scaling the energy of the optical supercontinuum pulses is also disclosed.
摘要:
Amplifying optical waveguide devices, which, by combining an instantaneous or nearly instantaneous gain medium with pulsed cladding-pumping can convert the multimode pump pulses to higher-brightness (even single-mode) signal pulses. The operating parameters can be carefully matched to the interaction length of the amplifying optical device to promote efficient conversion. The invention combines attractive features of cladding-pumped waveguide devices such as robustness and good thermal management properties with those of synchronously pumped devices. Thus, the pulse energy of the generated beam is not limited by the energy that can be stored in the gain medium.
摘要:
An optical fibre arrangement has at least two optical fibre sections, each optical fibre section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fibre arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fibre. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fibre and a first multiplexer connected to the input fibre. Each amplifier is configured such that at least one of the amplifying optical fibres is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
摘要:
A method of optical pulse propagation via a dispersive optical fibre, the method comprising the steps of: launching the optical pulses into the fibre at a pulse intensity sufficient to provide non-linear dispersion compensation during propagation through a first portion of the fibre; and providing a counter-chirping device to substantially compensate for the dispersion of a remaining, second portion of the fibre.
摘要:
An optical pulse source comprising a DPSS pump laser, a photonic crystal fiber (PCF), and acousto-optic modulator (AOM) gating device is disclosed. The pump pulses are coupled through lenses to the AOM gating device, which is synchronized to the pump laser and is operable to gate the pump pulses to a reduced repetition rate Rr=Rf/N, where Rf is the pump laser fundamental frequency. The pulses from the AOM are injected via optics into the PCF. Propagation through the PCF causes the pulses to broaden spectrally to produce optical supercontinuum pulses. An optical pulse source that further includes an acousto-optical tunable filter (AOTF) operable to convert the optical supercontinuum pulses into wavelength variable output pulses is also provided. A method of scaling the energy of the optical supercontinuum pulses is also disclosed.
摘要:
An optical source (10) comprising an optical output (12), a pump optical source (14), an optical splitter arranged to receive an optical signal from the pump optical source and to split the optical signal into a pump signal and a seed pump signal. A seed signal forming apparatus (18) is arranged to receive the seed pump signal at the pump wavelength and to transform the seed pump signal into a seed signal at a seed wavelength. A first microstructured optical fibre (MSF1) (20) is arranged to receive the pump signal and the seed signal. MSF1 is arranged to cause the pump signal to undergo four-wave mixing seeded by the seed signal on transmission through MSF1 such that a first optical signal at a signal wavelength and second optical signal at an idler wavelength are generated. One of the signal wavelength and the idler wavelength are the seed wavelength and one of the first and second optical signals are provided to the optical output.