摘要:
The present invention relates in a first aspect to an adhesion material for use in an individual containing encapsulated phase-change material. In particular, the adhesion material is for cosmetical or medicinal use in the body of an individual. The adhesion material contains encapsulated phase-change material having preferably a phase transition temperature above 40° C., like above 55° C. The adhesion material is particularly useful for adhering elements, like dental restorations, e.g. crowns or bridge, or brackets on elements in the body of an individual, like teeth or implants. That is, the adhesion material is particularly useful for adhering material in dental applications. In another aspect, a method is provided allowing removing a bracket, a crown or bridge, from implants, abutments or teeth. Furthermore, dental implant restoration systems and kits for permanent fixation of implants allowing improved removal thereof are provided.
摘要:
The present invention relates in a first aspect to an adhesion material for use in an individual containing encapsulated phase-change material. In particular, the adhesion material is for cosmetical or medicinal use in the body of an individual. The adhesion material contains encapsulated phase-change material having preferably a phase transition temperature above 40° C., like above 55° C. The adhesion material is particularly useful for adhering elements, like dental restorations, e.g. crowns or bridge, or brackets on elements in the body of an individual, like teeth or implants. That is, the adhesion material is particularly useful for adhering material in dental applications. In another aspect, a method is provided allowing removing a bracket, a crown or bridge, from implants, abutments or teeth. Furthermore, dental implant restoration systems and kits for permanent fixation of implants allowing improved removal thereof are provided.
摘要:
The present invention relates in a first aspect to an adhesion material for use in an individual containing encapsulated phase-change material. In particular, the adhesion material is for cosmetical or medicinal use in the body of an individual. The adhesion material contains encapsulated phase-change material having preferably a phase transition temperature above 40° C., like above 55° C. The adhesion material is particularly useful for adhering elements, like dental restorations, e.g. crowns or bridge, or brackets on elements in the body of an individual, like teeth or implants. That is, the adhesion material is particularly useful for adhering material in dental applications. In another aspect, a method is provided allowing removing a bracket, a crown or bridge, from implants, abutments or teeth. Furthermore, dental implant restoration systems and kits for permanent fixation of implants allowing improved removal thereof are provided.
摘要:
Method for the preparation of inorganic-NP-composite microgels is based on the reversible transfer of microgels between water and an organic solvent such as tetrahydrofuran (THF). The method is used to produce semiconductor nanocrystals, often referred to as quantum dots (QDs) which are well known for their unique optical, electrical, magnetic and catalytic properties, as the inorganic NPs, recognizing that the best quality QDs are synthesized by a high temperature process in organic media, and have their surface covered with hydrophobic ligands (such as trioctylphosphine oxide, TOPO) that render the NPs insoluble in an aqueous solution.
摘要:
Method for the preparation of inorganic-NP-composite microgels is based on the reversible transfer of microgels between water and an organic solvent such as tetrahydrofuran (THF). The method is used to produce semiconductor nanocrystals, often referred to as quantum dots (QDs) which are well known for their unique optical, electrical, magnetic and catalytic properties, as the inorganic NPs, recognizing that the best quality QDs are synthesized by a high temperature process in organic media, and have their surface covered with hydrophobic ligands (such as trioctylphosphine oxide, TOPO) that render the NPs insoluble in an aqueous solution.
摘要:
The present invention relates in a first aspect to an adhesion material for use in an individual containing encapsulated phase-change material. In particular, the adhesion material is for cosmetical or medicinal use in the body of an individual. The adhesion material contains encapsulated phase-change material having preferably a phase transition temperature above 40° C., like above 55° C. The adhesion material is particularly useful for adhering elements, like dental restorations, e.g. crowns or bridge, or brackets on elements in the body of an individual, like teeth or implants. That is, the adhesion material is particularly useful for adhering material in dental applications. In another aspect, a method is provided allowing removing a bracket, a crown or bridge, from implants, abutments or teeth. Furthermore, dental implant restoration systems and kits for permanent fixation of implants allowing improved removal thereof are provided.
摘要:
Method for the preparation of inorganic-NP-composite microgels is based on the reversible transfer of microgels between water and an organic solvent such as tetrahydrofuran (THF). The method is used to produce semiconductor nanocrystals, often referred to as quantum dots (QDs) which are well known for their unique optical, electrical, magnetic and catalytic properties, as the inorganic NPs, recognizing that the best quality QDs are synthesized by a high temperature process in organic media, and have their surface covered with hydrophobic ligands (such as trioctylphosphine oxide, TOPO) that render the NPs insoluble in an aqueous solution.
摘要:
The invention relates to a method for protecting a metal surface by means of a coating based on a corrosion-inhibiting composition containing the following component(s): a) at least one type of deposit substance comprising (1) anions incorporated by an oxidation reaction and (2) releasing at least a part of said anions for a potential variation between a redox potential of the deposit substance and an undisturbed corrosion potential of a metal surface or when a comparably small potential variation is produced on a defect, wherein said anions can inhibit a partial anodic or/and cathodic corrosion reaction or/and act as an adherence initiator, said anions comprise, respectively, an ionic radius non-impairing the migration thereof, possibly b) at least one type of matrix substance, wherein said deposit substance(s) disposed in the undisturbed areas of the coating are at least partially oxidised or at least partially doped by the anions and at least one type of the deposit substance in the disturbed areas of the at least partially reduced coating or devoid at least partially of doping anions, the coating is adjusted by selecting the contained components and the contents thereof in such a way that it is possible to act at least partially and prematurely against the generation or the progression of a delamination before an intense delamination occurred. The variants of the deposit substance optionally have a relatively low cation transport rate.
摘要:
A process for coating fine particles, in which the feed mixture contains: a monomer and/or an oligomer of aromatic compounds or unsaturated hydrocarbon compounds suitable for forming an electroconductive oligomer, polymer, copolymer, block copolymer or graft copolymer; at least one type of anions which (1) are and/or can be incorporated as doping ions into the structure of the conductive polymer; (2) can be discharged from said structure in the event of a potential fall of the conductive polymer (reduction); and (3) can have an anti-corrosive effect in the presence of a metallic surface; at least one type of particles; if necessary, at least one oxidising agent and water and/or at least another solvent. A coating is formed from the feed mixture on the particle surface, the feed mixture being converted by oxidation into a conductive polymer in the presence of at least one type a of mobile anti-corrosive anion.
摘要:
A process for coating metallic surfaces with an anti-corrosive composition that contains a conductive polymer and is a dispersion that contains the at least one conductive polymer mainly or entirely in particulate form, as well as a binder system. The conductive polymer is at least one polymer based on polyphenylene, polyfuran, polyimidazole, polyphenanthrene, polypyrrole, polythiophene and polythiophenylene charged with anti-corrosive mobile anions. Alternatively, the metallic surfaces can be first coated with a dispersion based on conductive polymers in particulate form, then coated with a composition which contains a binder system.