摘要:
The disclosure is generally directed to fabrication steps, and operation principles for microelectromechanical (MEMS) transducers. In one embodiment, the disclosure relates to a texture morphing device. The texture morphing device includes: a plurality of supports arranged on a substrate to support a deformable mirror; an ITO layer; and a Distributed Bragg Reflector (DBR) layer. A pair of adjacent supports form a cavity with the ITO layer and the deformable mirror. When the height of the cavity changes responsive to an external pressure, the internal reflection within the cavity is changed. The change in the height of the cavity causes the exterior texture to morph. Similar principles are disclosed for constructing sensor and actuators.
摘要:
A method and apparatus for making analog and digital electronics which includes a composite including a squishable material doped with conductive particles. A microelectromechanical systems (MEMS) device has a channel made from the composite, where the channel forms a primary conduction path for the device. Upon applied voltage, capacitive actuators squeeze the composite, causing it to become conductive. The squishable device includes a control electrode, and a composite electrically and mechanically connected to two terminal electrodes. By applying a voltage to the control electrode relative to a first terminal electrode, an electric field is developed between the control electrode and the first terminal electrode. This electric field results in an attractive force between the control electrode and the first terminal electrode, which compresses the composite and enables electric control of the electron conduction from the first terminal electrode through the channel to the second terminal electrode.
摘要:
A method and apparatus for making analog and digital electronics which includes a composite including a squishable material doped with conductive particles. A microelectromechanical systems (MEMS) device has a channel made from the composite, where the channel forms a primary conduction path for the device. Upon applied voltage, capacitive actuators squeeze the composite, causing it to become conductive. The squishable device includes a control electrode, and a composite electrically and mechanically connected to two terminal electrodes. By applying a voltage to the control electrode relative to a first terminal electrode, an electric field is developed between the control electrode and the first terminal electrode. This electric field results in an attractive force between the control electrode and the first terminal electrode, which compresses the composite and enables electric control of the electron conduction from the first terminal electrode through the channel to the second terminal electrode.
摘要:
The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.
摘要:
The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.
摘要:
The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.
摘要:
The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.
摘要:
The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.
摘要:
The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.
摘要:
The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.