摘要:
Collagen based matrices cross-linked by a reducing sugar(s) are used for preparing composite matrices, implants and scaffolds. The composite matrices may have at least two layers including reducing sugar cross-linked collagen matrices of different densities. The composite matrices may be used in bone regeneration and/or augmentation applications. Scaffolds including glycated and/or reducing sugar cross-linked collagen exhibit improved support for cell proliferation and/or growth and/or differentiation. The denser collagen matrix of the composite matrices may have a dual effect initially functioning as a cell barrier and later functioning as an ossification supporting layer. The composite matrices, implants and scaffolds may be prepared using different collagen types and collagen mixtures and by cross-linking the collagen(s) using a reducing sugar or a mixture of reducing sugars. The composite matrices, implants and scaffolds may include additives and/or living cells.
摘要:
The present invention provides a recombinant polypeptide having the amino acid sequence X-tyr.sup.26 -gly.sup.110 where tyr.sup.26 -gly.sup.110 is identical to the sequence shown in FIG. 10, and wherein X is methionine or absent and wherein asn.sup.72 may be substituted by pro. The invention further provides a method of producing the polypeptide which comprises transforming a host cell with an expression plasmid encoding the polypeptide, culturing the transformed host cell so that the cell produces the polypeptide encoded by the plasmid, and a method of recovering the polypeptide so produced.
摘要:
Collagen based matrices cross-linked by a reducing sugar(s) are used for preparing composite matrices, implants and scaffolds. The composite matrices may have at least two layers including reducing sugar cross-linked collagen matrices of different densities. The composite matrices may be used in bone regeneration and/or augmentation applications. Scaffolds including glycated and/or reducing sugar cross-linked collagen exhibit improved support for cell proliferation and/or growth and/or differentiation. The denser collagen matrix of the composite matrices may have a dual effect initially functioning as a cell barrier and later functioning as an ossification supporting layer. The composite matrices, implants and scaffolds may be prepared using different collagen types and collagen mixtures and by cross-linking the collagen(s) using a reducing sugar or a mixture of reducing sugars. The composite matrices, implants and scaffolds may include additives and/or living cells.
摘要:
Collagen based matrices cross-linked by a reducing sugar(s) are used for preparing composite matrices, implants and scaffolds. The composite matrices may have at least two layers including reducing sugar cross-linked collagen matrices of different densities. The composite matrices may be used in bone regeneration and/or augmentation applications. Scaffolds including glycated and/or reducing sugar cross-linked collagen exhibit improved support for cell proliferation and/or growth and/or differentiation. The denser collagen matrix of the composite matrices may have a dual effect initially functioning as a cell barrier and later functioning as an ossification supporting layer. The composite matrices, implants and scaffolds may be prepared using different collagen types and collagen mixtures and by cross-linking the collagen(s) using a reducing sugar or a mixture of reducing sugars. The composite matrices, implants and scaffolds may include additives and/or living cells.
摘要:
Collagen based matrices cross-linked by a reducing sugar(s) are used for preparing composite matrices, implants and scaffolds. The composite matrices may have at least two layers including reducing sugar cross-linked collagen matrices of different densities. The composite matrices may be used in bone regeneration and/or augmentation applications. Scaffolds including glycated and/or reducing sugar cross-linked collagen exhibit improved support for cell proliferation and/or growth and/or differentiation. The denser collagen matrix of the composite matrices may have a dual effect initially functioning as a cell barrier and later functioning as an ossification supporting layer. The composite matrices, implants and scaffolds may be prepared using different collagen types and collagen mixtures and by cross-linking the collagen(s) using a reducing sugar or a mixture of reducing sugars. The composite matrices, implants and scaffolds may include additives and/or living cells.
摘要:
Methods for preparing cross-linked polysaccharide matrices by cross-linking one or more amino group containing polysaccharides or amino-functionalized polysaccharides with reducing sugars and/or reducing sugar derivatives. The resulting matrices may include polysaccharide matrices and composite cross-linked matrices including polysaccharides cross-linked with proteins and/or polypeptides. Additives and/or cells may also be included in or embedded within the matrices. Various different solvent systems and reducing sugar cross-linkers for performing the cross-linking are described. The resulting matrices exhibit various different physical, chemical and biological properties.