Abstract:
An architecture to perform resource management among multiple network nodes and associated resources is disclosed. Example resource management techniques include those relating to: proactive reservation of edge computing resources; deadline-driven resource allocation; speculative edge QoS pre-allocation; and automatic QoS migration across edge computing nodes. In a specific example, a technique for service migration includes: identifying a service operated with computing resources in an edge computing system, involving computing capabilities for a connected edge device with an identified service level; identifying a mobility condition for the service, based on a change in network connectivity with the connected edge device; and performing a migration of the service to another edge computing system based on the identified mobility condition, to enable the service to be continued at the second edge computing apparatus to provide computing capabilities for the connected edge device with the identified service level.
Abstract:
Various aspects of methods, systems, and use cases for biometric security for edge platform management. An edge cloud system to implement biometric security for edge platform management comprises a biometric sensor; and an edge node in an edge network, the edge node to: receive a request to access a feature of the edge node, the request originating from an entity, wherein the request comprises an entity identifier and a feature identifier; receive from the biometric sensor, biometric data of the entity; authenticate the entity using the biometric data; and in response to authenticating the entity using the biometric data, grant access to the feature based on a crosscheck to an access control list that includes entity identifiers correlated to feature identifiers, using the received entity identifier and the received feature identifier.
Abstract:
A system includes a deterministic system, and a controller electrically coupled to the deterministic system via a link, wherein the controller comprises a transaction scheduling mechanism that allows data responses from the deterministic system, corresponding to requests issued from the controller, to be returned out of order.
Abstract:
A system includes a deterministic system, and a controller electrically coupled to the deterministic system via a link, wherein the controller comprises a transaction scheduling mechanism that allows data responses from the deterministic system, corresponding to requests issued from the controller, to be returned out of order.
Abstract:
A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
Abstract:
In one embodiment, a system on chip includes: a plurality of intellectual property (IP) agents formed on a semiconductor die; a mesh interconnect formed on the semiconductor die to couple the plurality of IP agents, and a plurality of mesh stops each to couple one or more of the plurality of IP agents to the mesh interconnect. The mesh interconnect may be formed of a plurality of rows each having one of a plurality of horizontal interconnects and a plurality of columns each having one of a plurality of vertical interconnects;, where at least one of the plurality of rows includes an asymmetrical number of mesh stops. Other embodiments are described and claimed.