Abstract:
A polynucleotide encoding a chimeric polypeptide is provided. The chimeric polypeptide includes (a) a first polypeptide region being capable of specifically binding at least one detectable molecule; and (b) a second polypeptide region being capable of specifically binding a biological component or macromolecule or targeting a cellular compartment. Methods utilizing the polynucleotide or the chimeric polypeptide for highlighting a cell compartment, a biological component or macromolecule are also provided.
Abstract:
A method for reducing intraocular pressure and increasing outflow facility from an eye of a subject having glaucoma includes the step of providing in the trabecular meshwork of the eye an amount of caldesmon effective to reduce intraocular pressure and increase outflow facility.
Abstract:
Methods for the treatment of glaucoma are provided by the present invention. The compounds described cause a perturbation of the actin cytoskeleton in the trabecular meshwork or the modulation of its interactions with the underlying membrane. Perturbation of the cytoskeleton and the associated adhesions reduces the resistance of the trabecular meshwork to fluid flow and thereby reduces intraocular pressure.
Abstract:
A method of treating a disease in which inhibiting of a proteasome is advantageous is provided. The method comprises administering to the subject a therapeutically effective amount of a compound which binds to a proteasome of a cell, the compound comprising a copper bound to a ligand, the ligand being configured such that upon binding to the proteasome, the copper interacts with cysteine 31 of a Beta2 subunit of the proteasome and further interacts with cysteine 118 of a Beta3 subunit of the proteasome, thereby treating the disease. Additional novel proteasome inhibitors are also provided as well as methods of identifying proteasome inhibitors.
Abstract:
A method of isolating polynucleotides encoding polypeptides affecting an organization of a subcellular organelle or structure of interest is provided. The method comprises: (a) expressing within a plurality of cells an expression library including a plurality of expression constructs each encoding a polypeptide of interest; (b) highlighting the subcellular organelle or structure of interest of the plurality of cells; and (c) isolating a cell or cells of the plurality of cells in which a cellular distribution and/or level of the subcellular organelle or structure of interest is altered to thereby isolate polypeptides capable of affecting the organization of the subcellular organelle or structure of interest.
Abstract:
An auto-focusing method and device are presented for determining an in-focus position of a sample supported on a substrate plate made of a material transparent with respect to incident electromagnetic radiation. The method utilizes an optical system capable of directing incident electromagnetic radiation towards the sample and collecting reflections of the incident electromagnetic radiation that are to be detected. A focal plane of an objective lens arrangement is located at a predetermined distance from a surface of the substrate, which is opposite to the sample-supporting surface of the substrate. A continuous displacement of the focal plane relative to the substrate along the optical axis of the objective lens arrangement is provided, while concurrently directing the incident radiation towards the sample through the objective lens arrangement to thereby focus the incident radiation to a location at the focal plane of the objective lens arrangement. Reflected components of the electromagnetic radiation to a location objective lens arrangement are continuously detected. The detected reflected components are characterized by a first intensity peak corresponding to an in-focus position of said opposite surface of the substrate, and a second intensity peak spaced in time from the first intensity peak and corresponding to an in-focus position of said sample-supporting surface of the substrate. This technique enables imaging of the sample when in the in-focus position of the sample-supporting surface of the substrate.
Abstract:
Methods for the treatment of glaucoma are described. The compounds described cause a perturbation of cell adhesions in the trabecular meshwork, mainly via disruption of the associated cytoskeletal structures or the modulation of their interactions with the underlying membrane. Perturbation of these adhesions reduces the resistance of the trabecular meshwork to fluid flow and thereby reduces intraocular pressure.
Abstract:
The present invention relates to a method of measuring cell migration, the method comprising (a) contacting a cell with a plurality of polystyrene non-fluorescent beads so as to generate a migratory track; and (b) analyzing at least one morphometric parameter of said migratory track, the morphomotric parameter being indicative of cell migration. The present invention also relates to methods of treating a medical condition associated with cell migration, the method comprising administering to a subject in need thereof a therapeutically effective amount of an agent capable of modulating the activity or expression of genes identified using the above assay, thereby treating the medical condition associated with cell migration.
Abstract:
A polynucleotide encoding a chimeric polypeptide is provided. The chimeric polypeptide includes (a) a first polypeptide region being capable of specifically binding at least one detectable molecule; and (b) a second polypeptide region being capable of specifically binding a biological component or macromolecule or targeting a cellular compartment. Methods utilizing the polynucleotide or the chimeric polypeptide for highlighting a cell compartment, a biological component or macromolecule are also provided.
Abstract:
An auto-focusing method and device are presented for determining an in-focus position of a sample supported on a substrate plate made of a material transparent with respect to incident electromagnetic radiation. The method utilizes an optical system capable of directing incident electromagnetic radiation towards the sample and collecting reflections of the incident electromagnetic radiation that are to be detected. A focal plane of an objective lens arrangement is located at a predetermined distance from a surface of the substrate, which is opposite to the sample-supporting surface of the substrate. A continuous displacement of the focal plane relative to the substrate along the optical axis of the objective lens arrangement is provided, while concurrently directing the incident radiation towards the sample through the objective lens arrangement to thereby focus the incident radiation to a location at the focal plane of the objective lens arrangement. Reflected components of the electromagnetic radiation to a location objective lens arrangement are continuously detected. The detected reflected components are characterized by a first intensity peak corresponding to an in-focus position of said opposite surface of the substrate, and a second intensity peak spaced in time from the first intensity peak and corresponding to an in-focus position of said sample-supporting surface of the substrate. This technique enables imaging of the sample when in the in-focus position of the sample-supporting surface of the substrate.