Abstract:
An integrated circuit (IC) includes at least one capacitor with metal electrodes. At least one of the electrodes (10 or 30) is formed from at least surface-silicided hemispherical grain silicon or silicon alloy. A fabrication process for obtaining such a capacitor with silicided metal electrodes is also provided.
Abstract:
The invention concerns a conducting layer having a thickness of between 1 and 5 atoms, an insulated gate being formed over a part of the conducting layer.
Abstract:
An integrated circuit (IC) includes at least one capacitor with metal electrodes. At least one of the electrodes (10 or 30) is formed from at least surface-silicided hemispherical grain silicon or silicon alloy. A fabrication process for obtaining such a capacitor with silicided metal electrodes is also provided.
Abstract:
An embodiment of a method for forming silicide areas of different thicknesses in a device comprising first and second silicon areas, comprising the steps of: implanting antimony or aluminum in the upper portion of the first silicon areas; covering the silicon areas with a metallic material; and heating the device to transform all or part of the silicon areas into silicide areas, whereby the silicide areas formed at the level of the first silicon areas are thinner than the silicide areas formed at the level of the second silicon areas.
Abstract:
At least one layer of a dielectric material 3 is deposited on a copper track 1 covered with an encapsulation layer 2. A cavity 6 is etched in the layer of dielectric material at the location of the future vertical connection. At least one protective layer is deposited in said cavity to preclude diffusion of copper 7. The protective layer 7 at the bottom of the cavity 6 is subjected to an anisotropic etching treatment and also the encapsulation layer 2 is subjected to etching, whereafter the cavity is filled with copper. The copper particles pulverized during etching the encapsulation layer do not contaminate the dielectric material 3.
Abstract:
The invention concerns a conducting layer having a thickness of between 1 and 5 atoms, an insulated gate being formed over a part of the conducting layer.
Abstract:
A fully-silicided gate electrode is formed from silicon and a metal by depositing at least two layers of silicon with the metal layer therebetween. One of the silicon layers may be amorphous silicon whereas the other silicon layer may be polycrystalline silicon. The silicon between the metal layer and the gate dielectric may be deposited in two layers having different crystallinities. This process enables greater control to be exercised over the phase of the silicide resulting from this silicidation process.
Abstract:
A fully-silicided gate electrode is formed from silicon and a metal by depositing at least two layers of silicon with the metal layer therebetween. One of the silicon layers may be amorphous silicon whereas the other silicon layer may be polycrystalline silicon. The silicon between the metal layer and the gate dielectric may be deposited in two layers having different crystallinities. This process enables greater control to be exercised over the phase of the silicide resulting from this silicidation process.
Abstract:
Capacitive coupling devices and methods of fabricating a capacitive coupling device are disclosed. The coupling device could include a stack of layers forming electrodes and at least one insulator. The insulator could include a region of doped silicon. The silicon could be doped with a species selected from Ce, Cr, Co, Cu, Dy, Er, Eu, Ho, Ir, Li, Lu, Mn, Pr, Rb, Sm, Sr, Tb, Tm, Yb, Y, Ac, Am, Ba, Be, Cd, Gd, Fe, La, Pb, Ni, Ra, Sc, Th, Hf, Tl, Sn, Np, Rh, U, Zn, Ag, and Yb in relief and forming roughnesses relative to the neighboring regions of the same level in the stack. The electrodes and the insulator form conformal layers above the doped silicon region.
Abstract:
An integrated circuit (IC) includes at least one capacitor with metal electrodes. At least one of the electrodes (10 or 30) is formed from at least surface-silicided hemispherical grain silicon or silicon alloy. A fabrication process for obtaining such a capacitor with silicided metal electrodes is also provided.