Abstract:
A thin film transistor for an organic light emitting diode includes a substrate including a pixel portion and an interconnection portion, a buffer layer on the substrate, a gate electrode and a gate interconnection on the buffer layer, wherein the gate electrode is located at the pixel portion and the gate interconnection is located at the interconnection portion, a gate insulating layer on the substrate, a semiconductor layer on the gate electrode, source and drain electrodes electrically connected to the semiconductor layer, and a metal pattern on the gate interconnection.
Abstract:
Provided is an amorphous silicon (a-Si) crystallization apparatus for crystallizing a-Si into polysilicon (poly-Si), and more particularly, to an a-Si crystallization apparatus for crystallizing a-Si into poly-Si by applying a certain power voltage to a conductive thin film disposed on a substrate including an a-Si layer to generate joule heat, wherein the a-Si formed on the substrate can be crystallized using the same equipment regardless of the size of the substrate. The a-Si crystallization apparatus includes a process chamber, a substrate holder disposed at a lower part of the process chamber, a power voltage application part disposed at an upper part of the process chamber and including a first electrode and a second electrode having a polarity different from the first electrode, and a controller for adjusting a distance between the first and second electrode.
Abstract:
A sealant curing apparatus is disclosed. In one embodiment, the apparatus includes a processing object panel, a panel supporting unit supporting the processing object panel and a voltage applying unit including a first electrode and a second electrode positioned on the panel supporting unit via the processing object panel interposed therebetween and having different polarities. The processing object panel includes: i) a conductive layer pattern including a heating unit that includes a lattice (grid) pattern, a connecting unit coupled to the first electrode and the second electrode, and a coupling unit connecting the heating unit and the connecting unit and ii) a sealant formed according to the heating unit.
Abstract:
The present invention relates generally to a thin film transistor, an organic light emitting diode (OLED) display including the same, and manufacturing methods of them. The thin film transistor comprises: a substrate; a gate electrode disposed on the substrate; a gate insulating layer disposed on the gate electrode; a semiconductor layer disposed on the gate insulating layer; an inter layer dielectric disposed on the entire surface of the substrate; and source and drain electrodes disposed on the inter layer dielectric and connected to the semiconductor layer, and in which the gate electrode is disposed so as to correspond to the entire surface of the semiconductor layer, and a manufacturing method thereof. The organic light emitting diode (OLED) display comprises the elements of the thin film transistor described above, and also includes an insulating film disposed on the entire surface of the substrate, and a first electrode, an organic layer, and a second electrode disposed on the insulating film, the first electrode being electrically connected to any one of the source and drain electrodes, and the gate electrode is disposed so as to correspond to the entire surface of the semiconductor layer.
Abstract:
A thin film transistor for an organic light emitting diode includes a substrate including a pixel portion and an interconnection portion, a buffer layer on the substrate, a gate electrode and a gate interconnection on the buffer layer, wherein the gate electrode is located at the pixel portion and the gate interconnection is located at the interconnection portion, a gate insulating layer on the substrate, a semiconductor layer on the gate electrode, source and drain electrodes electrically connected to the semiconductor layer, and a metal pattern on the gate interconnection.
Abstract:
A sealant curing apparatus is disclosed. In one embodiment, the apparatus includes a processing object panel, a panel supporting unit supporting the processing object panel and a voltage applying unit including a first electrode and a second electrode positioned on the panel supporting unit via the processing object panel interposed therebetween and having different polarities. The processing object panel includes: i) a conductive layer pattern including a heating unit that includes a lattice (grid) pattern, a connecting unit coupled to the first electrode and the second electrode, and a coupling unit connecting the heating unit and the connecting unit and ii) a sealant formed according to the heating unit.
Abstract:
A thin film transistor for an organic light emitting diode includes a substrate including a pixel portion and an interconnection portion, a buffer layer on the substrate, a gate electrode and a gate interconnection on the buffer layer, wherein the gate electrode is located at the pixel portion and the gate interconnection is located at the interconnection portion, a gate insulating layer on the substrate, a semiconductor layer on the gate electrode, source and drain electrodes electrically connected to the semiconductor layer, and a metal pattern on the gate interconnection.
Abstract:
The present invention relates generally to a thin film transistor, an organic light emitting diode (OLED) display including the same, and manufacturing methods of them. The thin film transistor comprises: a substrate; a gate electrode disposed on the substrate; a gate insulating layer disposed on the gate electrode; a semiconductor layer disposed on the gate insulating layer; an inter layer dielectric disposed on the entire surface of the substrate; and source and drain electrodes disposed on the inter layer dielectric and connected to the semiconductor layer, and in which the gate electrode is disposed so as to correspond to the entire surface of the semiconductor layer, and a manufacturing method thereof. The organic light emitting diode (OLED) display comprises the elements of the thin film transistor described above, and also includes an insulating film disposed on the entire surface of the substrate, and a first electrode, an organic layer, and a second electrode disposed on the insulating film, the first electrode being electrically connected to any one of the source and drain electrodes, and the gate electrode is disposed so as to correspond to the entire surface of the semiconductor layer.
Abstract:
In an apparatus for fabricating a thin film transistor, amorphous silicon is deposited on a substrate in a first multi-chamber and is crystallized into polycrystalline silicon without using a separate process chamber or multi-chamber, and the substrate deposited with the amorphous silicon is loaded into a second multi-chamber for forming electrodes, thereby making it possible to minimize a characteristic deviation and improve fabrication process efficiency. The apparatus includes a first multi-chamber in which amorphous silicon is deposited on a substrate, a second multi-chamber in which electrodes are formed on the substrate, and a loading/unloading chamber interposed between the first multi-chamber and the second multi-chamber. The loading/unloading chamber includes a substrate holder on a lower side thereof and a power voltage supplier on an upper side thereof.