Abstract:
In a server management method, a blade server system including a plurality of blade servers is connected to a monitor device in series. The monitor device sends a command to the server system to control the plurality of blade servers. The plurality of blade servers responds to the command. The monitor device receives information from the server system to monitor and control the plurality of blade servers. A server monitor system associated with the server monitor method is also disclosed.
Abstract:
A start-up control apparatus includes a switch, an advanced configuration and power interface (ACPI) controller, a power supply, and a control chip. The switch creates a trigger signal. The trigger signal includes a first falling-edge and a first rising-edge. The control chip includes a control module and a monitoring module.The monitoring module sends a status signal about the power supply to the control module. The control module receives the first falling-edge and sends a second falling-edge to the ACPI controller according to the status signal after receiving the status signal. The ACPI controller sends a control signal to the power supply to enable the power supply to change from a first status to a second status. The control module sends a second rising-edge to the ACPI controller before receiving the first rising-edge when the power supply is in the second status.
Abstract:
A server managing system includes a first server unit, a second server unit, and a monitor device connected to the first server unit and the second server unit in series. Each of the first server unit and the second server unit comprises multiple hardware components and a microcontroller connected to the multiple hardware components. The microcontroller monitors the multiple hardware components and sends monitored hardware information to the monitor device.
Abstract:
A monitor and control system includes a server model, a number of switches, a temperature sensor mounted in the server model, a monitor and control device, and a microcontroller. The switches are connected to the resistors to control current through the resistors. The temperature sensor is mounted in the server model. The monitor and control device is connected to the server model and configured to monitor and control the server model. The microcontroller is configured to switch the switches on and off and send temperature information sensed by the temperature sensor to the monitor and control device.
Abstract:
A testing method for a fan module is provided. When the fan module is tested, a testing computer sends a testing command to a testing device first. Then, the testing device respond to the testing command and controls the fan module to work in a plurality of rotational speed modes in sequence. The testing device reads an actual rotational speed when the fan module works in one of the rotational speed modes and sends the actual rotational speed back to the testing computer. The testing computer compares the actual rotational speed with a corresponding reference rotational speed value stored in the testing computer, and determines the testing result. Finally, the testing result is shown.
Abstract:
A start-up control apparatus includes a switch, an advanced configuration and power interface (ACPI) controller, a power supply, and a control chip. The switch creates a trigger signal. The trigger signal includes a first falling-edge and a first rising-edge. The control chip includes a control module and a monitoring module. The monitoring module sends a status signal about the power supply to the control module. The control module receives the first falling-edge and sends a second falling-edge to the ACPI controller according to the status signal after receiving the status signal. The ACPI controller sends a control signal to the power supply to enable the power supply to change from a first status to a second status. The control module sends a second rising-edge to the ACPI controller before receiving the first rising-edge when the power supply is in the second status.
Abstract:
A monitor and control system includes a server model, a number of switches, a temperature sensor mounted in the server model, a monitor and control device, and a microcontroller. The switches are connected to the resistors to control current through the resistors. The temperature sensor is mounted in the server model. The monitor and control device is connected to the server model and configured to monitor and control the server model. The microcontroller is configured to switch the switches on and off and send temperature information sensed by the temperature sensor to the monitor and control device.
Abstract:
In a server management method, a blade server system including a plurality of blade servers is connected to a monitor device in series. The monitor device sends a command to the server system to control the plurality of blade servers. The plurality of blade servers responds to the command. The monitor device receives information from the server system to monitor and control the plurality of blade servers. A server monitor system associated with the server monitor method is also disclosed.
Abstract:
A testing method for a fan module is provided. When the fan module is tested, a testing computer sends a testing command to a testing device first. Then, the testing device responds to the testing command and controls the fan module to work in a plurality of rotational speed modes in sequence. The testing device reads an actual rotational speed when the fan module works in one of the rotational speed modes and sends the actual rotational speed back to the testing computer. The testing computer compares the actual rotational speed with a corresponding reference rotational speed value stored in the testing computer, and determines the testing result. Finally, the testing result is shown.