Abstract:
An ink jet printing apparatus is provided comprising a print cartridge including at least one resistive heating element in at least one ink-containing chamber having an orifice. The apparatus further includes a driver circuit, electrically coupled to the print cartridge, for applying to the resistive heating element warming and firing pulses separated by a delay period. The warming pulse causes the resistive heating element to warm a portion of the ink adjacent to the heating element and the firing pulse causes the resistive heating element to produce a vapor bubble in the chamber which causes a droplet of ink to be ejected from the chamber orifice.
Abstract:
An ink jet printhead body includes one or more zones for cleaning, guiding and stabilizing a printhead wiper of an ink jet printer. The printhead body includes a receptacle providing a reservoir for ink, and the receptacle includes a wall having an outer surface. The wall includes a region at which location of one or more ink discharge nozzles is established. A plurality of ribs is located in each of the wiper cleaning zones, which in turn is located to be adjacent the wall region. The orientation of the ribs may be defined with reference to a first axis extending in the plane of the outer wall surface and intersecting the wall region in a first direction, and by a second axis, or axis of symmetry, extending in the plane of the outer wall surface and extending substantially parallel to an edge of the wall and through a central portion of the region to perpendicularly intersect the first axis. The orientation of the plurality of ribs is such that a direction of elongation of at least some of the plurality of ribs is in a direction substantially non-orthogonal to both the first axis and the second axis. The plurality of ribs defines a plurality of non-rectangular cavities. The plurality of ribs and plurality of cavities cooperate to remove and collect excess ink and contaminants from the printhead wiper.
Abstract:
Nozzles in an ink jet printhead nozzle plate are laser formed into the nozzle plate at a spacing differing from that of the corresponding ink heating elements by a function of the thermal expansion characteristics whereby heating of the nozzle plate to activate a heat set adhesive for securing the nozzle plate to the heating element substrate expands the nozzle plate thereby aligning the nozzle axes with the corresponding heating elements.
Abstract:
An ink jet print head identification system for providing print head identifying information to the electronics of an ink jet printer includes one or more programmable drain transistors integrated onto a print head chip. Existing address lines that interconnect the printer electronics and print head electronics are used to serially read the digital contents of each programmed transistor. The printer electronics reads each bit by combinationally applying a pull up voltage on two of the address lines while pulling down the voltage on one address line. If the drain of the transistor being read is programmed as an electrically conducting short, then the transistor will turn on and the voltage level on one of the pulled up address lines will not reach a logic high. If the drain is programmed as a non-conducting gap, the transistor will not conduct and the voltage level on both pulled up lines reach a logic high. The printer electronics detects whether the voltage level on both lines is a logic high and accordingly determines the digital contents of the identification circuit. After each bit has been read, the printer electronics determines print head identifying information based on the bit pattern that was retrieved from the identification circuit.
Abstract:
Heater chips for use with a printing device, such as heater chips that include a first heater array, positioned substantially adjacent a first via, and a second heater array, positioned substantially adjacent a second via. The heater chip can also include a region, positioned between the first heater array and the second heater array, and a temperature sensing element operable to sense the temperature of the region, where the temperature sensing element is substantially centrally disposed with respect to the region. According to one embodiment of the invention, the temperature sensing element comprises a temperature sensing resistor.
Abstract:
Embodiments of the invention can provide systems, methods, and apparatus for bidirectional printhead maintenance. One embodiment of the invention can provide a method for providing maintenance to a printhead comprising one or more ink nozzles for dispensing ink. The method can include providing a wiper for a printhead, wherein the wiper can include at least a first edge and a second edge. In addition, the method can include manipulating the first edge of the wiper in a forward or rearward direction across some or all of the ink nozzles during printing, wherein at least a portion of the nozzles can be cleaned by the first edge. Furthermore, the method can include manipulating the second edge of the wiper in a forward or rearward direction across some or all of the ink nozzles based at least in part on a maintenance-type command, wherein at least a portion of the nozzles can be cleaned by the second edge.
Abstract:
An ink jet print head identification system for providing print head identifying information to the electronics of an ink jet printer includes one or more parallel load, serial out, dynamic shift registers integrated into a print head chip having a plurality of address lines interconnecting the printer electronics and the print head electronics. The memory input of each shift register is electrically connected to a memory matrix that supplies digital bits of information to the shift register in response to receiving a decode signal function from the printer electronics. In a preferred embodiment, two of the address lines provide each of the registers with successive sequential clock signals to serially shift the bit of information received from the shift register's corresponding memory matrix to an output line where the print head identifying information is read by the printer electronics. Embodiments of the invention may employ any number of shift registers and memory matrices independent of the number of available address lines.
Abstract:
The invention is directed to an ink jet printer including a printhead and a printhead driver. The printhead includes a substrate, a nozzle plate having a plurality of ink emitting orifices, a plurality of jetting heaters on the substrate and respectively associated with the plurality of ink emitting orifices, and at least one substrate heater associated with the substrate. Each of the jetting heaters and the substrate heaters include first and second terminals. The printhead driver has a plurality of energizable outputs including at least one power line output and at least two enable line outputs. One power line output is electrically connected to a first terminal of each of a jetting heater and a substrate heater. Two of the enable line outputs are coupled to a second terminal of the jetting heater and a second terminal of the substrate heater. During energizing of the one power line output, the jetting heater and the substrate heater may be selectively actuated by selectively energizing the two enable line outputs.
Abstract:
A method for determining the pulse width for driving printhead nozzles in a thermal inkjet printer. The printhead is preheated to a desired temperature during a maintenance mode. The printhead nozzle heaters are successively driven in respective heating intervals, where each successive heating interval is characterized by shorter drive pulse width pulses occurring at a higher pulse frequency. The printhead temperature data received during each heating interval is processed to determine a respective temperature slope. The temperature slopes are compared to a desired threshold temperature slope, and when a match is found, the pulse width associated with the matched temperature slope is used to drive the nozzle heaters during subsequent printer operations to print characters on a print medium
Abstract:
An apparatus addresses ink jet heating elements based on image data to cause ejection of ink droplets toward a print medium. The apparatus includes a controller for generating address signals, power signals, and first and second bank signals. The first and second bank signals, which are carried on first and second bank lines, alternate between on and off states. The first bank signal is off when the second bank signal is on, and the second bank signal is off when the first bank signal is on. The apparatus has m address lines and n power lines connected to the controller for carrying the address signals and the power signals. A print head has m×n number of first driver circuits, each of which is connected to the first bank line and to a corresponding one of the m address lines. The first driver circuits enable flow of a first driving current when the first bank signal and the address signal are simultaneously on on the first bank line and the corresponding address line. The print head has m×n number of second driver circuits, each of which is connected to the second bank line and to a corresponding one of the m address lines. The second driver circuits enable flow of a second driving current when the second bank signal and the address signal are simultaneously on on the second bank line and the corresponding address line. First heating elements are each connected to a corresponding one of the first driver circuits and to one of the n power lines. A first heating element is activated by the first driving current when the power signal is on on the connected power line and the corresponding first driver circuit enables flow of the first driving current. Second heating elements are each connected to a corresponding one of the second driver circuits and to one of the n power lines. A second heating element is activated by the second driving current when the power signal is on on the connected power line and the corresponding second driver circuit enables flow of the second driving current.