摘要:
A method for fabricating complimentary metal-oxide-semiconductor field-effect transistor is disclosed. The method includes the steps of: (A) forming a first gate structure and a second gate structure on a substrate; (B) performing a first co-implantation process to define a first type source/drain extension region depth profile in the substrate adjacent to two sides of the first gate structure; (C) forming a first source/drain extension region in the substrate adjacent to the first gate structure; (D) performing a second co-implantation process to define a first pocket region depth profile in the substrate adjacent to two sides of the second gate structure; (E) performing a first pocket implantation process to form a first pocket region adjacent to two sides of the second gate structure.
摘要:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a P-type well, a gate disposed on the P-type well, a first spacer disposed on the gate, an N-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the N-type source/drain region, a second spacer around the first spacer and the second spacer directly on and covering a portion of the silicon cap layer and a silicide layer disposed on the silicon cap layer.
摘要:
A method of fabricating transistors includes: providing a substrate including an N-type well and P-type well; forming a first gate on the N-type well and a second gate on the P-type well, respectively; forming a third spacer on the first gate; forming an epitaxial layer in the substrate at two sides of the first gate; forming a fourth spacer on the second gate; forming a silicon cap layer covering the surface of the epitaxial layer and the surface of the substrate at two sides of the fourth spacer; and forming a first source/drain doping region and a second source/drain doping region at two sides of the first gate and the second gate respectively.
摘要:
A method for fabricating complimentary metal-oxide-semiconductor field-effect transistor is disclosed. The method includes the steps of: (A) forming a first gate structure and a second gate structure on a substrate; (B) performing a first co-implantation process to define a first type source/drain extension region depth profile in the substrate adjacent to two sides of the first gate structure; (C) forming a first source/drain extension region in the substrate adjacent to the first gate structure; (D) performing a second co-implantation process to define a first pocket region depth profile in the substrate adjacent to two sides of the second gate structure; (E) performing a first pocket implantation process to form a first pocket region adjacent to two sides of the second gate structure.
摘要:
The invention is directed to a method for manufacturing a semiconductor. The method comprises steps of providing a substrate having a gate structure formed thereon and forming a source/drain extension region in the substrate adjacent to the gate structure. A spacer is formed on the sidewall of the gate structure and a source/drain region is formed in the substrate adjacent to the spacer but away from the gate structure. A bevel carbon implantation process is performed to implant a plurality carbon atoms into the substrate and a metal silicide layer is formed on the gate structure and the source/drain region.
摘要:
A method of fabricating transistors includes: providing a substrate including an N-type well and P-type well; forming a first gate on the N-type well and a second gate on the P-type well, respectively; forming a third spacer on the first gate; forming an epitaxial layer in the substrate at two sides of the first gate; forming a fourth spacer on the second gate; forming a silicon cap layer covering the surface of the epitaxial layer and the surface of the substrate at two sides of the fourth spacer; and forming a first source/drain doping region and a second source/drain doping region at two sides of the first gate and the second gate respectively.
摘要:
A semiconductor substrate having a first active region and a second active region for fabricating a first transistor and a second transistor is provided. A first gate structure and a second gate structure are formed on the first active region and the second active region and a first spacer is formed surrounding the first gate structure and the second gate structure. A source/drain region for the first transistor and the second transistor is formed. The first spacer is removed from the first gate structure and the second gate structure and a cap layer is disposed on the first transistor and the second transistor and the cap layer covering the second transistor is removed thereafter. An etching process is performed to form a recess in the substrate surrounding the second gate structure. An epitaxial layer is formed in the recess and the cap layer is removed from the first transistor.
摘要:
A semiconductor device includes a substrate defining an active area thereon, a shallow trench isolation on the substrate and directly surrounding the active area, a gate, a source and a drain on the active area and a hard mask on the border of the shallow trench isolation and the active area.
摘要:
A method of manufacturing a MOS transistor, in which, a tri-layer photo resist layer is used to form a patterned hard mask layer having a sound shape and a small size, and the patterned hard mask layer is used to form a gate. Thereafter, by forming and defining a cap layer, a recess is formed through etching in the substrate. The patterned hard mask is removed after epitaxial layers are formed in the recesses. Accordingly, a conventional poly bump issue and an STI oxide loss issue leading to contact bridge can be avoided.
摘要:
The present invention provides a method for forming a metal-oxide-semiconductor (MOS) device and the structure thereof. The method includes at least the steps of forming a silicon germanium layer by the first selective epitaxy growth process and forming a cap layer on the silicon germanium layer by the second selective epitaxy growth process. Hence, the undesirable effects caused by ion implantation can be mitigated.