摘要:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a P-type well, a gate disposed on the P-type well, a first spacer disposed on the gate, an N-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the N-type source/drain region, a second spacer around the first spacer and the second spacer directly on and covering a portion of the silicon cap layer and a silicide layer disposed on the silicon cap layer.
摘要:
A method of fabricating transistors includes: providing a substrate including an N-type well and P-type well; forming a first gate on the N-type well and a second gate on the P-type well, respectively; forming a third spacer on the first gate; forming an epitaxial layer in the substrate at two sides of the first gate; forming a fourth spacer on the second gate; forming a silicon cap layer covering the surface of the epitaxial layer and the surface of the substrate at two sides of the fourth spacer; and forming a first source/drain doping region and a second source/drain doping region at two sides of the first gate and the second gate respectively.
摘要:
A method of fabricating transistors includes: providing a substrate including an N-type well and P-type well; forming a first gate on the N-type well and a second gate on the P-type well, respectively; forming a third spacer on the first gate; forming an epitaxial layer in the substrate at two sides of the first gate; forming a fourth spacer on the second gate; forming a silicon cap layer covering the surface of the epitaxial layer and the surface of the substrate at two sides of the fourth spacer; and forming a first source/drain doping region and a second source/drain doping region at two sides of the first gate and the second gate respectively.
摘要:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a dummy gate on the substrate; forming a contact etch stop layer on the dummy gate and the substrate; performing a planarizing process to partially remove the contact etch stop layer; partially removing the dummy gate; and performing a thermal treatment on the contact etch stop layer.
摘要:
A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate, wherein the substrate comprises a transistor region defined thereon; forming a gate insulating layer on the substrate; forming a stacked film on the gate insulating layer, wherein the stacked film comprises at least one etching stop layer, a polysilicon layer, and a hard mask; patterning the gate insulating layer and the stacked film for forming a dummy gate on the substrate; forming a dielectric layer on the dummy gate; performing a planarizing process for partially removing the dielectric layer until reaching the top of the dummy gate; removing the polysilicon layer of the dummy gate; removing the etching stop layer of the dummy gate for forming an opening; and forming a conductive layer in the opening for forming a gate.
摘要:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a P-type well, a gate disposed on the P-type well, a first spacer disposed on the gate, an N-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the N-type source/drain region, a second spacer around the first spacer and the second spacer directly on and covering a portion of the silicon cap layer and a silicide layer disposed on the silicon cap layer.
摘要:
An adjusting method of channel stress includes the following steps. A substrate is provided. A metal-oxide-semiconductor field-effect transistor is formed on the substrate. The MOSFET includes a source/drain region, a channel, a gate, a gate dielectric layer and a spacer. A dielectric layer is formed on the substrate and covers the metal-oxide-semiconductor field-effect transistor. A flattening process is applied onto the dielectric layer. The remaining dielectric layer is removed to expose the source/drain region. A non-conformal high stress dielectric layer is formed on the substrate having the exposed source/drain region.
摘要:
A method of fabricating transistors includes: providing a substrate including an N-type well and P-type well; forming a first gate on the N-type well and a second gate on the P-type well, respectively; forming a third spacer on the first gate; forming an epitaxial layer in the substrate at two sides of the first gate; forming a fourth spacer on the second gate; forming a silicon cap layer covering the surface of the epitaxial layer and the surface of the substrate at two sides of the fourth spacer; and forming a first source/drain doping region and a second source/drain doping region at two sides of the first gate and the second gate respectively.
摘要:
A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate, wherein the substrate comprises a transistor region defined thereon; forming a gate insulating layer on the substrate; forming a stacked film on the gate insulating layer, wherein the stacked film comprises at least one etching stop layer, a polysilicon layer, and a hard mask; patterning the gate insulating layer and the stacked film for forming a dummy gate on the substrate; forming a dielectric layer on the dummy gate; performing a planarizing process for partially removing the dielectric layer until reaching the top of the dummy gate; removing the polysilicon layer of the dummy gate; removing the etching stop layer of the dummy gate for forming an opening; and forming a conductive layer in the opening for forming a gate.
摘要:
A method for forming a transistor having a metal gate is provided. A substrate is provided first. A transistor is formed on the substrate. The transistor includes a high-k gate dielectric layer, an oxygen containing dielectric layer disposed on the high-k gate dielectric layer, and a dummy gate disposed on the oxygen containing dielectric layer. Then, the dummy gate and the patterned gate dielectric layer are removed. Lastly, a metal gate is formed and the metal gate directly contacts the high-k gate oxide.