Abstract:
The present invention provides a method for targeted cell retrieval, comprising: providing a population of barcoded cells, said population comprising a plurality of different barcodes, each of the plurality of different barcodes being uniquely targetable with a target-specific CRISPR RNA; introducing a CRISPR-Cas system, or one or more vectors encoding the components of the CRISPR-Cas system, into the population of barcoded cells said CRISPR-Cas system having a target-specific CRISPR RNA that targets a first barcode of said plurality of different barcodes, thereby causing a CRISPR-Cas system-mediated change at a target site leading to a change in one or more detectable properties of at least one cell carrying said first barcode; and retrieving said at least one cell carrying said first barcode based on the change in said one or more detectable properties. Also provided are products and kits for use in the method of the invention.
Abstract:
Anti-CD19 B4 antibodies with modified variable regions are disclosed. The modified anti-CD19 variable region polypeptides have alterations to one or more framework regions or complementarity determining regions of the heavy chain variable region or light chain variable region, thereby to reduce a T-cell response.
Abstract:
The invention is directed to substituted pyridine derivatives. Specifically, the invention is directed to compounds according to Formula (Iar): wherein Yar, X1ar, X2ar, R1ar, R2ar, R3ar, R4ar and R5ar are as defined herein; or a pharmaceutically acceptable salt or prodrug thereof.The compounds of the invention are selective inhibitors of DNMT1 and can be useful in the treatment of cancer, pre-cancerous syndromes, beta hemoglobinopathy disorders, sickle cell disease, sickle cell anemia, and beta thalassemia, and diseases associated with DNMT1 inhibition. Accordingly, the invention is further directed to pharmaceutical compositions comprising a compound of the invention. The invention is still further directed to methods of inhibiting DNMT1 activity and treatment of disorders associated therewith using a compound of the invention or a pharmaceutical composition comprising a compound of the invention.
Abstract:
Chemokine receptor CCR4 and its ligands CCL17 and CCL22 are used as markers for the identification and/or staging of cancer. The level of CCR4, CCL17 and CCL22 are found to increase during malignant tumour progression. CCR4, CCL17 and CCL22 are used as markers for the stratification of cancer patients according to their suitability for treatment with anti-cancer agents. Information of diagnostic character is provided by measuring the level of one or more of CCR4, CCL17 and CCL22 present in a patient sample. Methods of treatment of cancer patients which agents that modulate the activity of CCR4, CCL17 and CCL22. Methods of screening for agents which modulate the biological activities of CCR4, CCL17 and CCL22 provide anti-cancer agents.
Abstract:
Chemokine receptor CCR4 and its ligands CCL17 and CCL22 are used as markers for the identification and/or staging of cancer. The level of CCR4, CCL17 and CCL22 are found to increase during malignant tumour progression. CCR4, CCL17 and CCL22 are used as markers for the stratification of cancer patients according to their suitability for treatment with anti-cancer agents. Information of diagnostic character is provided by measuring the level of one or more of CCR4, CCL17 and CCL22 present in a patient sample. Methods of treatment of cancer patients which agents that modulate the activity of CCR4, CCL17 and CCL22. Methods of screening for agents which modulate the biological activities of CCR4, CCL17 and CCL22 provide anti-cancer agents.
Abstract:
Anti-CD19 B4 antibodies with modified variable regions are disclosed. The modified anti-CD19 variable region polypeptides have alterations to one or more framework regions or complementarity determining regions of the heavy chain variable region or light chain variable region, thereby to reduce a T-cell response.
Abstract:
Anti-CXCL12 antibody molecules and their uses are disclosed, and in particular anti-CXCL12 antibody molecules that are capable of inhibiting a biological activity of CXCL12 in vitro and in vivo and their use for treating CXCL12-mediated disease.
Abstract:
The present invention provides methods of obtaining information relevant to monitoring and diagnosing cancer, particularly monitoring the progression or development of cancer, monitoring the response of cancer to treatment, diagnosing cancer, making a cancer prognosis, predicting the likelihood of a cancer responding to treatment and stratifying subjects having cancer. The methods involve determining the ratio of circulating CCL17 to circulating CCL22 in a sample from a subject.
Abstract:
The present invention relates to naphthyridine and isoquinoline compounds, and pharmaceutically acceptable compositions thereof, useful as inhibitors of CDK8/19, and for the treatment of CDK8/19-related disorders.
Abstract:
The invention is directed to substituted pyridine derivatives. Specifically, the invention is directed to compounds according to Formula (Iar): wherein Yar, X1ar, X2ar, R1ar, R2ar, R3ar, R4ar and R5ar are as defined herein; or a pharmaceutically acceptable salt or prodrug thereof. The compounds of the invention are selective inhibitors of DNMT1 and can be useful in the treatment of cancer, pre-cancerous syndromes, beta hemoglobinopathy disorders, sickle cell disease, sickle cell anemia, and beta thalassemia, and diseases associated with DNMT1 inhibition. Accordingly, the invention is further directed to pharmaceutical compositions comprising a compound of the invention. The invention is still further directed to methods of inhibiting DNMT1 activity and treatment of disorders associated therewith using a compound of the invention or a pharmaceutical composition comprising a compound of the invention.