摘要:
A nonwoven fabric useful as a component in a personal hygiene product and a nonwoven personal hygiene component, which is substantially free or free of non-ribbon shaped (e.g., round-shaped) spunbond fibers and includes a meltblown layer between and in direct contact with ribbon-shaped spunbond layers. The meltblown layer has a basis weight of at least about 0.008 gsm and not greater than about 5 gsm, and the nonwoven fabric or component has a basis weight of at least about 8 gsm and not greater than about 40 gsm, a pore size of less than or equal to about 27 microns when measured at 10% of cumulative filter flow. The nonwoven fabric also can have a low surface tension liquid strike through flow of less than 0.9 ml per second, a ratio of low surface tension liquid strike through flow to air permeability of greater than or equal to about 0.016, or both. Personal hygiene articles can incorporate the nonwoven fabric or component.
摘要:
A nonwoven fabric useful as a component in a personal hygiene product and a nonwoven personal hygiene component, which is substantially free or free of non-ribbon shaped (e.g., round-shaped) spunbond fibers and includes a meltblown layer between and in direct contact with ribbon-shaped spunbond layers. The meltblown layer has a basis weight of at least about 0.008 gsm and not greater than about 5 gsm, and the nonwoven fabric or component has a basis weight of at least about 8 gsm and not greater than about 40 gsm, a pore size of less than or equal to about 27 microns when measured at 10% of cumulative filter flow. The nonwoven fabric also can have a low surface tension liquid strike through flow of less than 0.9 ml per second, a ratio of low surface tension liquid strike through flow to air permeability of greater than or equal to about 0.016, or both. Personal hygiene articles can incorporate the nonwoven fabric or component.
摘要:
Continuous seamless cross-plied battery separators are formed by bringing at least two anisotropic with respect to mechanical strength (e.g. uniaxially oriented), microporous plies into adhering face contact such that the uniaxial orientation of one microporous ply is angularly biased relative to the other microporous ply (e.g., between 20.degree. to 90.degree.). This biased relationship between the microporous plies is most preferably achieved by spirally or helically slitting a tubular microporous membrane. The plies are adhered to one another with adhesive and/or by means of heat and pressure. The cross-plied battery separators of this invention exhibit increased puncture strength without significant decrease in permeability. As a result, the battery separators of this invention are especially useful in battery cell configurations whereby the battery separator is sandwiched between anode and cathode sheets to form a composite battery cell structure which is then rolled or folded to be placed in a battery cell can.