Abstract:
A foundation pile includes a tubular wall, a top cap covering a top end of the tubular wall, a partition plate disposed transversely in the tubular wall below the top cap and dividing an inner space of the tubular wall into upper and lower spaces, two opposite fixing holes extending radially through the tubular wall and communicated with the upper space, and a plurality of pressure release holes extending radially through the tubular wall and communicated with the lower space. The partition plate prevents concrete slurry from flowing into the upper space. The pressure release holes allow the concrete to consolidate therein and to thereby increase transverse binding forces with the foundation pile. A method of installing the foundation pile is also disclosed.
Abstract:
A battery separator is made from a microporous polyolefin membrane having a thickness of less than or equal to 0.5 mil. The separator is made by extruding a parison, collapsing the parison to form a flat sheet comprising two plies, annealing the sheet, stretching the sheet, and winding the sheet.
Abstract:
Briefly described, embodiments of this disclosure, among others, include moisture-vapor-breathable and liquid-impermissible structures (e.g., pads, cushions, padding, and the like, for the seat, arms, back, etc. of upholstery furniture), and/or upholstery structures (e.g., upholstery furniture) that include moisture-vapor-breathable and liquid-impermissible structure, methods of making moisture-vapor-breathable and liquid-impermissible structures.
Abstract:
This invention relates to a process for crystallizing and solid state polymerizing polymers, in the form of amorphous pellets by coating the pellets with a coating of 50 to 250 ppm of an anti-sticking agent to the amorphous pellets. The invention also relates to such a coated pellet. The coated pellet is then heated such that its surface is at least partially crystallized or essentially crystallized. Next it is solid state polymerize to a high molecular weight. The capacity of the crystallization and solid state polymerization process can be increased by using higher temperatures when the anti-sticking agent is present as compared to a normal process using the same polymer. The preferred anti-sticking agents are chosen to give high clarity to articles made from the high molecular weight pellet. The preferred anti-slicking agent is fumed silica, but other organic and inorganic coatings may be used.
Abstract:
A continuous method of making dry-stretch microporous membrane battery separators from polypropylene (PP) or polyethylene (PE) or both benefits to the manufacturers in the production efficiency. The precursor-film extrusion in this invention is accomplished by multiple small film-extrusion lines at a compatible line speed with the followed oven processes (annealing and stretching). The overall production process starts continuously from film extrusion to annealing and to stretching. The benefits of the inventive continuous process includes a higher product yield, more effective oven-time usage, no need to handle and manage the intermediate products, less need in labor and machine maintenance, and potentially more stable product quality.The dry-stretch membrane separators made with this inventive continuous method include (1) single-ply PP or PE separators having a thickness ranging from 0.2 mil to 2.0 mil; (2) PP/PE/PP trilayer microporous membrane separators having a thickness ranging from 0.6 mil to 4.0 mil. The PP/PE/PP trilayer can be accomplished in the early extrusion via either co-extrusion or extruding separately and then interposing PE layer between two PP layers, continuously, right before annealing/bonding and stretching process.
Abstract translation:从聚丙烯(PP)或聚乙烯(PE)制造干拉伸微孔膜电池隔板的连续方法或两者都有利于制造商的生产效率。 在本发明中的前体膜挤出物是通过多个小的薄膜挤出生产线以相容的线速度与随后的烘箱工艺(退火和拉伸)完成的。 整个生产过程从薄膜挤出到退火和拉伸开始。 本发明的连续方法的优点包括较高的产品产量,更有效的烘箱时间使用,不需要处理和管理中间产品,更少的劳动和机器维护需求以及可能更稳定的产品质量。干拉伸膜 用本发明的连续方法制成的分离器包括(1)厚度为0.2密耳至2.0密耳的单层PP或PE分离器; (2)厚度为0.6密耳至4.0密耳的PP / PE / PP三层微孔隔膜。 PP / PE / PP三层可以通过共挤出或挤出分别在早期挤出中完成,然后在退火/粘合和拉伸过程之前连续地在两个PP层之间插入PE层。
Abstract:
Continuous seamless cross-plied battery separators are formed by bringing at least two anisotropic with respect to mechanical strength (e.g. uniaxially oriented), microporous plies into adhering face contact such that the uniaxial orientation of one microporous ply is angularly biased relative to the other microporous ply (e.g., between 20.degree. to 90.degree.). This biased relationship between the microporous plies is most preferably achieved by spirally or helically slitting a tubular microporous membrane. The plies are adhered to one another with adhesive and/or by means of heat and pressure. The cross-plied battery separators of this invention exhibit increased puncture strength without significant decrease in permeability. As a result, the battery separators of this invention are especially useful in battery cell configurations whereby the battery separator is sandwiched between anode and cathode sheets to form a composite battery cell structure which is then rolled or folded to be placed in a battery cell can.
Abstract:
The present invention is directed to a shutdown, bilayer battery separator and a process for making the same. A first microporous membrane with shutdown capability and a second microporous membrane with strength capability are joined together in face-to-face contact. The face of the first membrane being adhered by calendaring, adhesives, or welding, to the face of the second membrane, and the separator having a thickness of less than 3 mils, and a puncture strength, as measured from the second microporous membrane, of greater than 1900 g-mm, and a peel strength of greater than 1 grams/centimeter.
Abstract:
This invention relates to a process for crystallizing and solid state polymerizing polymers, in the form of amorphous pellets by coating the pellets with a coating of 50 to 250 ppm of an anti-sticking agent to the amorphous pellets. The invention also relates to such a coated pellet. The coated pellet is then heated such that its surface is at least partially crystallized or essentially crystallized. Next it is solid state polymerize to a high molecular weight. The capacity of the crystallization and solid state polymerization process can be increased by using higher temperatures when the anti-sticking agent is present as compared to a normal process using the same polymer. The preferred anti-sticking agents are chosen to give high clarity to articles made from the high molecular weight pellet. The preferred anti-sticking agent is fumed silica, but other organic and inorganic coatings may be used.
Abstract:
A fusible, structurally stabilized battery separator is disclosed. The separator is formed by extruding a cylindrical parison of a polymer film and quenching the film on both sides with a low temperature fluid stream prior to processing the film to impart microporosity. Most preferably, the film includes at least a polyethylene layer and polypropylene layer.
Abstract:
The present invention is directed to a shutdown, trilayer battery separator. The separator has a first and a third microporous membranes sandwiching a second microporous membrane. The first and the third membranes have a greater puncture strength than the second membrane. The second membrane has a lower melting temperature than either the first or the third membranes.