Abstract:
An implantable medical electrical lead for applying electrical stimulation energy from an external power source and adapted to be introduced through a small diameter needle. The lead includes a lead body and a fixation assembly. The lead body includes a wire and an electrically non-conductive material. The wire forms a wound coil along a distal portion thereof. The non-conductive material covers some of the wire coil, with an uncovered distal region of the wire serving as an electrode. The fixation assembly is coupled to the uncovered distal region and includes at least one fixation member. The fixation assembly is transitionable between a contracted state and an expanded state, with the fixation member extending outwardly relative to the coil to a greater extent in the expanded state. In the expanded state, the fixation assembly serves to inhibit axial migration of the lead body.
Abstract:
The invention includes a delivery device for introducing a prosthesis beneath a tissue surface that includes an elongate body having a proximal end and a distal end, an opening on the elongate body, which is at least partially covered by a mesh, and a deployment lumen extending through the body that has a longitudinal axis and a distal end, wherein the distal end of the deployment lumen is positioned proximal of the opening. Also included are delivery systems and kits that include delivery devices of the invention. Further, an overtube for receiving an endoscope, that includes an elongate, flexible tubular body, having a proximal end and a distal end and a longitudinal axis, at least one lumen extending therethrough for receiving an endoscope, an opening on the body, in communication with the lumen, and a tissue limiting surface within the body aligned with the opening, formed at least in part by a mesh. Methods of using the devices, and kits are also included in the invention.
Abstract:
In general, the invention is directed to a medical device implantable in a body of a patient. The device includes a housing with a plurality of collapsible fixation structures coupled to the housing, and can be in a collapsed configuration or an expanded configuration. The device assumes a collapsed configuration when in the bore of an insertion device, and assumes the expanded configuration when expelled from the insertion device into the body of the patient. The extended fixation structures engage the tissues in the body and restrict migration. One exemplary application of the invention is in the context of a microstimulator, with a pulse generator housed in the housing and one or more electrodes coupled to the housing. The fixation structures help keep the electrodes proximate to the tissues that are to receive the stimulation.
Abstract:
One or more tissue bulking devices are implanted to bulk a structure within a patient. The tissue bulking devices may be implanted between the structure and an adventitial layer that at least partially covers the structure, or within the adventitial layer. In some embodiments, the structure is a luminal wall that defines an inner lumen, and the bulking devices are implanted endoscopically via the lumen. In such embodiments, the tissue bulking devices may be implanted between a muscular layer of the luminal wall and an adventitial layer that at least partially covers the luminal wall, or within the adventitial layer. In exemplary embodiments, the luminal wall is the wall of the esophagus of the patient, and the tissue bulking devices are implanted proximate to the lower esophageal sphincter (LES) of the patient to treat gastroesophageal reflux disease (GERD).
Abstract:
The disclosure describes an axial lead connector assembly for an implantable medical device (IMD). The lead connector assembly facilitates electrical connection between an implantable medical lead and circuitry contained within the housing of an IMD. A connector header defines an axial stack bore to receive an axial stack of in-line connector components. The connector components define a common lead bore to receive a proximal end of an implantable lead. The in-line stack of connector components may include seals, electrical connector elements, a strain relief, and a locking device, each of which defines a passage that forms part of the lead bore.
Abstract:
The disclosure describes an endoscopic delivery system that includes an endoscope and a tissue-receiving member. The tissue-receiving member includes an opening to receive the distal end of the endoscope. The tissue-receiving member also defines a tissue-receiving space that receives tissue when vacuum pressure is applied to the space through the endoscope. A tool and/or material may be delivered to the tissue drawn into the tissue-receiving space. The tissue-receiving member may be cap-like, and only receive the distal end of the endoscope, or include an overtube that receives a substantial portion of the endoscope. The system may be used to, for example, deliver tissue bulking devices to a location proximate to the lower esophageal sphincter (LES) for treatment of gastroesophageal reflux disease (GERD).
Abstract:
A medical lead includes a connector for operably coupling the lead to an active medical device. The connector includes a first tubular conductive contact having a length, a proximal end, a distal end and a lumen extending through the contact from the proximal end to the distal end. The connector also includes a second tubular conductive contact having a length, a proximal end, and a distal end. The length of the second contact is greater than the length of the first contact. The second contact is disposed in the lumen of the first contact such that the proximal and distal ends of the second contact extend beyond the proximal and distal ends of the first contact. The lead further includes first and second electrodes. The first electrode is operably coupled to the first contact, and the second electrode is operably coupled to the second contact.
Abstract:
An implantable intramuscular lead system, such as for use as a gastric lead, and method of use in which electrodes along the lead are imbedded in tissue. First and second anchors are mounted on an elongate lead. At least the second anchor is movable along the length of the lead relative to the first anchor to capture the tissue between the anchors so that the lead is retained in position. The system facilitates implantation of the lead in tissue, and may be particularly suited for minimally invasive implantation, such as laparoscopically.
Abstract:
An implantable medical electrode lead for stimulation of bodily tissue. The lead is adapted for use with a needle lumen diameter of not greater than 0.05 inch, and includes a lead body and a tine assembly. The lead body has a distal section forming at least one exposed electrode surface. The tine assembly includes a plurality of tines each having a base end coupled to an exterior of the lead body immediately adjacent the exposed electrode surface and a free end that is movable relative to the lead body to inhibit axial migration of the lead body upon implantation into a patient. In one embodiment, the lead body is a PNE lead and provides two electrode surfaces for bipolar operation.
Abstract:
A system for providing medical electrical stimulation including a lead assembly and a cannula. The lead assembly includes a lead body and a needle tip. The lead body has a distal section and a proximal section. The needle tip is formed of an electrically conductive material and is connected to the distal section of the lead body. The lead body is slidably disposed within a cannula lumen, with a distal end of the cannula being selectively connected to an abutment surface of the needle tip such that the needle tip extends distal the cannula to define a needle probe. With this construction, the lead assembly can be delivered to a desired implantation site via manipulation of the cannula and/or energization of the needle tip, and the cannula can be removed from the lead body without requiring movement of the needle tip.