Abstract:
An automated capillary zone electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a container connected to the detection end of the capillaries. The container is provided with valving which facilitate cleaning the capillaries, loading buffer into the capillaries, introducing samples to be electrophoresced into the capillaries, and performing capillary zone electrophoresis on the thus introduced samples.
Abstract:
An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.
Abstract:
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
Abstract:
An automated capillary zone electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a container connected to the detection end of the capillaries. The container is provided with valving which facilitate cleaning the capillaries, loading buffer into the capillaries, introducing samples to be electrophoresced into the capillaries, and performing capillary zone electrophoresis on the thus introduced samples.
Abstract:
A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.
Abstract:
An automated capillary zone electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends is spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a container connected to the detection end of the capillaries. The container is provided with valving which facilitate cleaning the capillaries, loading buffer into the capillaries, introducing samples to be electrophoresed into the capillaries, and performing capillary zone electrophoresis on the thus introduced samples.
Abstract:
An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.
Abstract:
The invention disclosed a novel mesoporous silica-based xerogel and its use in hemorrhage control. The mesoporous silica-based xerogel material has tunable mesopores (1-50 nm), high specific surface area (100-1400 m2/g), macroscopical morphology (powder, film, disc, column, etc.) and adjustable compositions (SiO2, CaO and P2O5, etc.) as well as good biodegradation. The mesoporous silica-based xerogels herein effectively promote the blood clotting under various conditions including slow and severe hemorrhage, even at the blood oozing site of bone defect. Meanwhile, the networks of silica-based xerogel with good elastic and mechanic properties, formed by adsorbing a large amount of water, can modulate the cell behavior and tissue growth, and thus promote the wound healing. Additionally, due to the mesoporous structure, the materials have the potential to load drug, thrombin and bioactive factors, which is favorable for the therapeutical efficacy.
Abstract:
The invention discloses an optimized DNA sequence of recombinant human bone morphogenetic protein-2 (rhBMP-2) based on the Escherichia coli expression system and a method for the preparation of the rhBMP-2. Specifically, the invention provides the optimal DNA sequences suitable for Escherichia coli expression system, the methods for efficient preparation of the rhBMP-2, and the related construction of the recombinant bacteria, the expression and purification technologies. Compared with the traditional hBMP-2 gene without optimizing, the rhBMP-2 expression level of the optimized gene in Escherichia coli is increased by 50%. Additionally, this invention also provides a method for preparation long chain rhBMP-2 with enhanced renaturation efficiency and yield of purification.
Abstract:
The invention disclosed a novel mesoporous silica-based xerogel and its use in hemorrhage control. The mesoporous silica-based xerogel material has tunable mesopores (1-50 nm), high specific surface area (100-1400 m2/g), macroscopical morphology (powder, film, disc, column, etc.) and adjustable compositions (SiO2, CaO and P2O5, etc.) as well as good biodegradation. The mesoporous silica-based xerogels herein effectively promote the blood clotting under various conditions including slow and severe hemorrhage, even at the blood oozing site of bone defect. Meanwhile, the networks of silica-based xerogel with good elastic and mechanic properties, formed by adsorbing a large amount of water, can modulate the cell behavior and tissue growth, and thus promote the wound healing. Additionally, due to the mesoporous structure, the materials have the potential to load drug, thrombin and bioactive factors, which is favorable for the therapeutical efficacy.