摘要:
A circuit arrangement and method utilize a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to include an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers. Based upon a standardized placement of the inter-layer interface region in each circuit layer, and a standardized arrangement of electrical conductors associated with the inter-layer bus, each circuit layer may designed using a standardized template upon which the design features necessary to implement the inter-layer bus are already provided, thereby simplifying circuit layer design and the interconnection of functional units to the inter-layer bus. In addition, vertically-oriented supernodes may be defined within a semiconductor stack to provide multiple independently-operating nodes having functional units disposed in multiple circuit layers of the stack.
摘要:
An apparatus, program product and method facilitate the design of a multi-layer circuit arrangement incorporating a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to include an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers.
摘要:
A functional unit, such as an SRAM, in a single clock chip design that contains a scan path can be clocked on either rising edge and falling edge of the clock. The functional unit includes a clock signal having two phases and a plurality of latches for scanning. Two scan latches are added outside the array of the functional unit. In one clock phase, the two scan latches form a latch pair which is connected to the array at Scan-in side. In the other clock phase, one scan latch is connected to the array at the Scan-in side, and the other scan latch is connected to the array at the Scan-out side. In scan/hold operations, a first control signal for the array which is clocked at the falling edge of the clock leads a second control signal for the array which is clocked at the rising edge of the clock. In ABIST/functional operations, the first control signal for the array which is clocked at the falling edge of the clock trails the second control signal for the array which is clocked at the rising edge of the clock.
摘要:
A circuit arrangement and method utilize hybrid bonding techniques that combine wafer-wafer bonding processes with chip-chip and/or chip-wafer bonding processes to form a multi-layer semiconductor stack, e.g., by bonding together one or more sub-assemblies formed by wafer-wafer bonding together with other sub-assemblies and/or chips using chip-chip and/or chip-wafer bonding processes. By doing so, the advantages of wafer-wafer bonding techniques, such as higher interconnect densities, may be leveraged with the advantages of chip-chip and chip-wafer bonding techniques, such as mixing and matching chips with different sizes, aspect ratios, and functions.
摘要:
A circuit arrangement and method utilize hybrid bonding techniques that combine wafer-wafer bonding processes with chip-chip and/or chip-wafer bonding processes to form a multi-layer semiconductor stack, e.g., by bonding together one or more sub-assemblies formed by wafer-wafer bonding together with other sub-assemblies and/or chips using chip-chip and/or chip-wafer bonding processes. By doing so, the advantages of wafer-wafer bonding techniques, such as higher interconnect densities, may be leveraged with the advantages of chip-chip and chip-wafer bonding techniques, such as mixing and matching chips with different sizes, aspect ratios, and functions.
摘要:
A circuit arrangement and method utilize a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to include an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers. Based upon a standardized placement of the inter-layer interface region in each circuit layer, and a standardized arrangement of electrical conductors associated with the inter-layer bus, each circuit layer may designed using a standardized template upon which the design features necessary to implement the inter-layer bus are already provided, thereby simplifying circuit layer design and the interconnection of functional units to the inter-layer bus. In addition, vertically-oriented supernodes may be defined within a semiconductor stack to provide multiple independently-operating nodes having functional units disposed in multiple circuit layers of the stack.
摘要:
An apparatus and method for providing a variable frequency clock source is described wherein the frequency may be changed while maintaining the phase of the clock signal. A frequency conversation circuit, such as a phase locked loop (PLL), is employed to change the frequency of the clock and is controlled by a control unit which maintains the phase of the output clock signal while undergoing a frequency change operation.
摘要:
According to the present invention, a pipelined SRAM structure and clocking method is disclosed. The SRAM interface and clocking method are specifically intended for use with Level 2 and Level 3 cache SRAM memory devices. In the present invention, the oscillator that generates the clock signal for the CPU is also used to generate the clock signals for all of the other components that interface with the SRAM. Each of the generated clock signals are dependant on the same clock event, allowing the clock speed to be decreased for testing or debugging while maintaining higher speed clock edge relationships. The various clock signals that are generated from the oscillator are used to cycle-steal time from multiple cycles. This technique allows sub-5 nanosecond (nS) access to Level 2 and Level 3 cache memory devices that have access times greater than 5 nS.
摘要:
An apparatus, program product and method facilitate the design of a multi-layer circuit arrangement incorporating a universal, standardized inter-layer interconnect in a multi-layer semiconductor stack to facilitate interconnection and communication between functional units disposed on a stack of semiconductor dies. Each circuit layer in the multi-layer semiconductor stack is required to include an inter-layer interface region that is disposed at substantially the same topographic location such that when the semiconductor dies upon which such circuit layers are disposed are arranged together in a stack, electrical conductors disposed within each semiconductor die are aligned with one another to provide an inter-layer bus that is oriented vertically, or transversely, with respect to the individual circuit layers.
摘要:
A circuit arrangement and method utilize hybrid bonding techniques that combine wafer-wafer bonding processes with chip-chip and/or chip-wafer bonding processes to form a multi-layer semiconductor stack, e.g., by bonding together one or more sub-assemblies formed by wafer-wafer bonding together with other sub-assemblies and/or chips using chip-chip and/or chip-wafer bonding processes. By doing so, the advantages of wafer-wafer bonding techniques, such as higher interconnect densities, may be leveraged with the advantages of chip-chip and chip-wafer bonding techniques, such as mixing and matching chips with different sizes, aspect ratios, and functions.